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 I
n response to energy security and environmen-
tal concerns, the U.S. is collaborating with nine 
other countries to develop fourth-generation 
nuclear reactor technology, which is intended 
to be safer than current reactors, be available at 

lower total cost, and incur financial risks no greater 
than those for other energy technologies. In this ar-
ticle, we discuss the financial risks for new nuclear 
power to achieve its cost objectives, from a three-

decade historical database of delivered costs from 
each of 99 individual U.S. nuclear reactors. We argue 
that past technology development patterns indicate 
the importance of including high-cost surprises in 
the planning process.

One hundred and four nuclear reactors provided 
19.3% of U.S. electricity generation in 2005, but no 
new reactors have been approved for construction 
by the U.S. Nuclear Regulatory Commission (NRC) 
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since 1978. Rising and volatile petroleum prices, geo-
political conflicts in fossil-fuel-rich regions, increas-
ing energy demand from emerging economies, and 
climate change have all contributed to a resurgence 
of interest in nuclear power because of its potential 
to address energy security without emitting CO2 or 
regional pollutants (1–5). Yet questions linger about 
waste management and proliferation (6), and even 
in a carbon-constrained world, nuclear power may 
be more expensive than some decentralized energy- 
efficient and distributed-generation technologies 
(7). What is universally agreed upon is that the role 
nuclear power will play in our energy future will be 
shaped, critically, by the framing of debate, the pro-
cess of evaluation, and the thoughtful integration of 
this discourse into eventual policy choices (8).

For nuclear power to play a significant role in ad-
dressing future energy needs, countries must build 
new reactors to replace those ending their service 
life and to expand significantly the number of com-
mercial reactors in service. Our 60-year experience 
with nuclear energy has underscored that future 
policy formulation requires an estimate of future 
nuclear energy costs, benefits, and risks as well as 
recognition of the complex technical and social fac-
tors that influenced the costs of the current nuclear 
fleet. To contribute to this evaluation, we describe a 
new database assembled from the actual plant-by-
plant data from U.S. nuclear power costs, illustrate a 
pattern of high-cost surprises that is consistent with 
findings in other statistical studies of extreme val-
ues, and argue that the discussion of future nuclear 
power should delve deeper into whether next-gener-
ation reactors might experience similar surprises.

Future reactor design
In response to the public policy goals described 
earlier, a variety of research and policy teams have 
conducted assessments of nuclear energy’s future po-
tential (9, 10) and outlined plans for both incremental 
and fundamental changes to nuclear reactor design 
to increase safety and decrease costs (11). The new 
reactors would therefore encompass improved de-
signs derived from the Generation III+ (Gen-III+) ma-
chines in the near term and more radical Generation 
IV (Gen-IV) designs in the medium term. The U.S. 
Energy Policy Act of 2005 and the Advanced Energy 
Initiative of 2006 seek to encourage this development 
by providing incentives for new plant construction, 
fast-track licensing, liability protection, and research 
and development incentives to the industry. As of Oc-
tober 2006, 44 operating licenses for existing reac-
tors had been renewed, 10 were under review, and 17 
more applications were expected to be submitted by 
2010 (12). Nuclear operators have, moreover, submit-
ted their intent to file applications for approval for at 
least 27 new Gen-III+ reactors (13).

Finally, the U.S. and its international partners 
have for several years been conducting an extensive 
planning process focused on the implementation of 
simplified reactor engineering, passively safe and 
proliferation-resistant reactor designs, and design 
standardization within Gen-IV nuclear plants. Six 
different reactor designs are under development, 

and several seek to diversify beyond standard light-
water uranium reactors, for example, by incorporat-
ing gas, liquid sodium, or lead cooling and drawing 
from a larger set of possible fuel cycles (11). In each 
area of design, goals were set to be significant ad-
vances over the current fleet of pressurized water 
reactors (PWRs) and boiling water reactors (BWRs) 
in the U.S. The forum has, moreover, adopted ex-
plicit financial goals: first, to have a lower lifetime 
levelized cost than other energy sources; and sec-
ond, to achieve a level of financial risk comparable 
with other energy projects.

Nuclear cost risks
Despite these goals, past experience with such large-
scale technological ventures highlights linked pol-
icy, cultural, and economic challenges, some of 
which may not be amenable to technological solu-
tion (14). In the past, U.S. nuclear reactors depended 
not only on the economics of power generation but 
also on the risks of capital cost escalation, the im-
portance of operational learning, and the idiosyn-
cratic problems of large-generation resources whose 
site characteristics do not allow for mass produc-
tion (15–17).

One way to understand the cost risks within this 
new deployment of nuclear reactors is to investigate 
the cost distribution of their nearest technological 
relatives, the current generation of nuclear reac-
tors. The record of costs for the emergence of the 
earlier generation of U.S. nuclear technology high-
lights several factors—lower costs for early models, 
a changing regulatory environment, and the impact 
of local opposition—that complicate simple learn-
ing-curve analysis and also skew the distribution of 
costs beyond the standard risk estimates and cost 
contingencies traditionally used for financing large 
projects (18).

New nuclear reactors represent novel and com-
plex technology that will retain a risk of high costs. 
A critical planning question, then, is how to model 
or account for this risk. One factor that will likely 
remain unchanged for the next generation is the 
reliance on large-scale site-built technology con-
structed within a rapidly changing technology and 
market environment, subject to local variability in 
supplies, labor, technology, and public opinion, all 
of which add uncertainty to total costs. Deregulated 
markets impel management to choose between in-
vesting in higher-risk, larger-scale, and more capi-
tal-intensive projects such as nuclear, and investing 
in established technologies, such as gas turbines, 
cogeneration, wind, and coal, which can general-
ly be built more quickly than reactors. The Gen-IV 
project also envisions six different reactor designs, 
which may reduce the benefits of standardization. 
Despite these considerable cost risks, policy argu-
ments continue to focus narrowly on technical pos-
sibilities for standardization, new technologies, and 
waste storage.

To evaluate the overall costs of existing commer-
cial reactors, we compiled detailed data for each re-
actor within the entire commercial U.S. nuclear fleet 
and calculated a lifetime-levelized cost (in 2004 ¢/
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kWh) for each reactor (details of this analysis are 
available in the supporting information online). The 
project costing methodology used in this study is a 
version of the levelized present worth of revenue re-
quirements method (19, 20), which has been widely 
used in power project planning for many decades 
and is also the framework in which current U.S. 
nuclear plants were originally evaluated. Data were 
drawn from a variety of publicly available sources, 
and when we needed to make assumptions about 
future operations, we based those assumptions on 
recent performance. The Fort St. Vrain gas-cooled 
reactor, which never operated well, was omitted 
from this analysis because of its radically different 
design; however, it does bolster the points we make 
in this paper. The Shoreham and Three Mile Island 
(TMI) Unit 2 reactors present two special cases: both 
were shut down prematurely, the first because of a 

political decision and the second because of the TMI 
accident in 1979. For comparison with the rest of the 
fleet, we assumed that these reactors would have a 
40-year lifetime, and we used the national averages 
for all cost components and operational aspects of 
these reactors other than capital costs.

A comparison of the lifetime levelized costs of 
electricity from U.S. nuclear reactors (Figure 1) ex-
hibits a noteworthy—but, in hindsight, unsurpris-
ing—distribution that includes not only a large 
group of relatively low-cost reactors (e.g., with bus-
bar [delivered] costs of 3–8 ¢/kWh, in 2004 dollars) 
but also a significant group of plants that raise the 
question of cost risks. In fact, a survey reveals that 
16% of the reactors delivered total costs >8 ¢/kWh 
and 5% were >12 ¢/kWh. Importantly, whereas many 
estimates for the costs of new nuclear technology 
anticipate a normal or lognormal cost distribution, 

F I G U R E  1

Distribution of total levelized busbar costs for 99 U.S. reactors, including capital 
and operating costs
sixteen reactors in the top quartile account for a disproportionate share of the fleet’s total costs, higher than ei-
ther a normal or lognormal distribution would predict. pWr = pressurized water reactor, BWr = boiling water re-
actor. Cohort indicates one of eight predictive cost categories described by rothwell (48 ). Levelized costs (which 
exclude subsidies and externalities) are calculated using a real discount rate of 6%, as described in supporting 
information. shoreham and tmi unit 2 levelized costs are calculated assuming they operated as average nuclear 
reactors over a 40-year lifetime.
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this high-cost cluster exceeds significantly the pric-
es that traditional financial analysis would predict 
for new plants (21). Financial risk is often defined 
as the possibility of surprise, and the historical re-
cord of nuclear power clearly demonstrates this 
possibility.

Increasing costs
Nuclear power costs in the U.S. have undergone a 
well-chronicled trajectory of increasing capital and 
operating costs, followed by dramatic improvements 
in operational efficiency and reliability (17, 22–25). 
From the start of commercial nuclear reactor con-
struction in the mid-1960s through the 1980s, capital 
costs (dollars per kilowatt of capacity) for building 
nuclear reactors escalated dramatically. Although 
unit costs for technology usually decrease with vol-
ume of production because of scale factors and tech-
nological learning (26–28), the case of nuclear power 
has been seen largely as an exception that reflects 
the idiosyncrasies of the regulatory environment as 
public opposition grew, regulations were tightened, 
and construction times increased (15, 29, 30).

Because of the low variable costs of nuclear pow-
er, this escalation in capital costs had a large im-
pact on delivered electricity costs. In fact, for the 
99 reactors for which capital cost data are publicly 
available, this factor explains 91.6% of the observed 
variance in total lifetime levelized costs (p < 0.01). 
Nevertheless, operational learning, perhaps spurred 
by improved economic incentives in the industry 
(25, 31), has contributed to significant decreases in 
marginal electricity production costs. The Gen-IV 
process hopes to avoid cost overruns by integrating 
standardized reactor designs with tighter regulatory 
approval timelines. It remains to be seen whether 
this goal can be achieved without the construction 
of many reactors of each type.

After the accident at TMI in 1979, the industry was 
subjected to intense regulatory scrutiny and evalua-
tion. As a result, the overall fleet capacity factor—the 
net generation for all reactors in the set divided by 
the maximum possible generation of all reactors in 
the set—dropped precipitously and reached its nadir 
in 1982 at 52.9%. During the period 2000–2004, the 
69 reactors operational by 1982 had improved their 
overall capacity factor to 87.4%. This increase, at-
tributable to improvements in utilization rates and 
decreases in service downtime (32), is equivalent to 
an additional 16.3 GW of generation just from those 
reactors existing in 1982—equivalent to the addition 
of ~15 new nuclear reactors. A similar calculation 
shows that such operational improvements, applied 
to all installations, not just the ones existing in 1982, 
added the equivalent of 25 new reactors. Moreover, 
capacity factors improved overall age classes, sug-
gesting that the improvements were due primarily 
to operational learning rather than to technologi-
cal differences.

The historical experience of nuclear power in the 
U.S. not only presents specific failures that might be 
addressed through policy but also suggests that new, 
complex, and culturally sensitive technologies risk 
surprises that skew the distribution of costs beyond 

what might be expected in a rational world. This 
risk affects the major stated goal for Gen-IV—that 
their financial risk is no greater than that for oth-
er technologies. Although each poorly performing 
Gen-III reactor has specific, idiosyncratic reasons 
for its inefficiencies, omitting underperforming as-
sets from the analysis would introduce a survivor-
ship bias: a focus on the remaining reactors might 
underestimate the uncertainty in developing new 
technologies. Judgments made on how to handle the 
probability of high-cost outliers exert a strong influ-
ence on the picture of total costs, according to our 
data on historical experience.

Extreme events
The statistical treatment of extreme values—and 
the inverse, the study of low-probability risks—is 
familiar to many disciplines, including hydrology 
(33, 34); climatology (35, 36); structural and safety 
engineering (37); risk analysis (38, 39); insurance 
(40); and, more recently, financial markets (41, 42) 
and even electricity markets (43). In each of these 
areas, infrequent but extreme events occur more 
often than one might expect from standard distri-
butions and are often underrepresented in percep-
tions or policy. Our historical data indicate that, as 
in these other fields, extreme values are a nontriv-
ial element of the nuclear cost distribution. Yet, to 
our knowledge, little research has been carried out 
on this question as it relates to nuclear power. The 
Gen-IV economic forecasts carefully specify rates 
of learning for each reactor class, ranging from a 
high-cost prototype through an “nth-of-a-kind” in-
stallation that represents the point at which the ini-
tial learning has already been incorporated. This 
method, thereby, explicitly incorporates a reason-
able expectation of high-cost reactors in the early 
phases (44). Nevertheless, historical experience sug-
gests the importance of a more thorough investiga-
tion of including cost surprise, highly skewed cost 
distributions, or extreme values once the reactors 
have been developed.

What do the historical record of costs and past 
successes and failures tell us? First, even though the 
next generation of nuclear technology and public 
sharing of the risks of nuclear development and de-
ployment will mitigate costs, the costs will remain 
prone to what we argue are likely surprises. Expec-
tations are high for next-generation cost reductions: 
the two best-performing present-day nuclear reac-
tors (Oconee 1 and 2)—using well-tested technol-
ogy run with best-industry practice—have lifetime 
delivered costs of 3.2 ¢/kWh (Figure 2), which is 
above the projected average cost for all Gen-IV re-
actors when compared on a consistent basis (9, 10). 
Factors expected to lead to such cost improvements 
include better technology, streamlined regulation, 
operational incentives, design standardization, the 
intensive use of information technology for design, 
supply chain and construction management, and 
concern over climate change. Yet, high unit costs 
and long lead times lead to a slower learning rate and 
require more expenditures than would technologies 
of smaller scale, and the contextualized nature of 
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site-built nuclear reactors presents a nontrivial risk 
of cost surprises.

Second, nuclear energy politics will clearly re-
main a key driver. Judging competing expectations 
for cost savings in the case of nuclear power requires 
published, comparative data to demonstrate that the 
lurking possibility of cost surprise will not overshad-
ow the benefits of standardization and regulatory 
streamlining. A prudent and pragmatic approach 
would therefore engage public debate around at least 
the following four key recommendations.

First, conduct empirical and theoretical analyses 
of the role of extreme values and cost surprise in 
nuclear power. Our research suggests that the “fat 

tail” of the cost distribution has not been modeled 
adequately, leading to the potential for unexpect-
edly high-cost reactors that would affect estimates 
of financial risk for utilities and sponsor govern-
ments. Second, undertake comparative reviews of 
U.S., French, German, and Japanese cost trends (45), 
and relate these to the level of investment, regulatory 
involvement, and innovation that has taken place 
in each context.

Third, align economic incentives more closely 
with policy goals. The case for nuclear power resur-
gence rests not on expectations for dramatic growth 
in electricity demand but rather on concerns about 
energy security and climate change. Although the 
idea of internalizing costs for energy generation is 
not new, implementation of the idea lags. A carbon 
tax provides one approach to this problem; assess-
ing appropriate levies on energy sources that incur 
security costs to society remains a policy challenge 
that deserves additional scrutiny.

Fourth, understand and make explicit the ex-
tent of public subsidy to nuclear power in the form 
of risk sharing (46). Currently, U.S. law insures any 
catastrophic losses in excess of $10.2 billion due to 
nuclear accidents (47). The economic and financial 
risks of nuclear incidents—at reactors, in transport, 
and in long-term storage—should be included in 
calculations comparing Gen-IV plants with other 
technologies, some of which enjoy other forms of 
public subsidy.
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F I G U R E  2

Consistent comparison of levelized 
delivered electricity costs
three of the least expensive u.s. reactors in our 
sample are compared with estimates made in studies 
by the massachusetts insitute of technology (mit; 
9 ), the generation-iV international Forum (11 ), and 
the university of Chicago (uC; 10 ).

Discount rate is 6% real. the least costly reactor 
in the sample is Oconee 1; its busbar cost was 3.2 ¢/
kWh. Key data (date of operation start, duration of 
construction, lifetime capacity factor [CF] , size) for 
each plant are as follows: Oconee 1 (1973, 5.7 years, 
77.7%, 851 mW); arkansas 2 (1980, 7.2 years, 89.7%, 
858 mW); Byron 2 (1987, 11.6 years, 93.1%, 1120 
mW). the mit construction duration is 5 years for 
the “no-policy” case and 4 years for the “all-goes-
well” case; lifetime CF is 85%, and size is 1000 mW. 
Capital cost estimates for ap1000 are taken from the 
u.s. Department of energy road map for 2010. Oth-
er costs and assumptions for ap1000 are assumed to 
be the same as for the mit “all-goes-well” case. uC 
lifetime CF = 85%, size = 1000 mW, construction du-
ration = 7 years.
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Supporting information
Supporting information detailing the data, assumptions, and 
methods of calculation for the nuclear reactor cost results can 
be found online.
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