

Appliances: Designs and Standards for Sustainability

James E. McMahon, Ph.D. Department Head, Energy Analysis Lawrence Berkeley National Laboratory

> March 1, 2008 At UC Berkeley

INSTITUTIONAL INTRODUCTION

- LBNL is the first DOE national laboratory (1931)
 - -Research in all scientific disciplines; team-based
 - -Current focus on solving the energy/carbon problem
 - —Ca 3600 persons, \$400M/a
- Environmental Energy Technologies Division (EETD) started in 1973
 - Energy, technologies and analysis of systems/policies
 - End-use orientation, especially buildings, industry, and electricity sectors
 - —Ca 400 persons, \$50M/a
- Energy Analysis Department (EAD) since 1973

—Ca 120 persons, \$20M/a

OUTLINE

Overview of buildings sector

- Energy use, GHG emissions
- Expenditures
- End uses (appliances, equipment and lighting)
- **Time trends** (US buildings' energy, appliance efficiencies)
- Potential for energy efficiency technology in buildings
 - Energy savings
 - Costs of conserved energy
- Market effects of policies
 - Energy labels and standards
 - Public and private R&D
 - Private investment ("Clean Tech")
 - California AB32
 - National (and global) carbon policy

Buildings and expenditures

- Buildings include:
 - Residential: 116 million households in 2007
 - **Commercial:** 77 billion square feet
 - Office, retail, education, warehouse, lodging, service, public assembly, health care, food
- Expenditures: <u>70 % of construction</u>, <u>40% of energy</u>
 - New construction: \$780 B/yr (>7 million employees)
 - Renovation: \$390 B/yr (>1 million contractors)
 - Energy: \$370 B/yr

urs of World Class Science

1931-2006

.....

Energy Consumption by U.S. Buildings

- 71% of U.S. electricity consumption
- 54% of U.S. natural gas consumption
- 39% of U.S. carbon dioxide emissions

U.S. buildings are responsible for more CO₂ emissions than any country in the world except China & US

Buildings' Energy Consumption by End Use

Buildings consume 39% of total U.S. primary energy

71% of electricity and 54% of natural gas

U.S. CO₂ Emissions

By Sector

By End Use

Commercial Emissions

Efficiency contributed to large decrease in energy intensity (E/GDP) after 1973 (70Q avoided vs 25Q new supply)

Economic Impacts of Energy R&D and Regulations

Energy efficiency R&D has yielded a net benefit to the US economy Economic Benefits from energy efficiency standards were the largest from a sample of USDOE Energy Efficiency programs

Based on National Research Council, 2001. "Energy Research at DOE: Was It Worth It?"

ENERCY CAL BUILT

CALIFORNIA ENERGY COMMISSION

Impact of Standards on Efficiency of 3 Appliances

Source: S. Nadel, ACEEE, in ECEEE 2003 Summer Study, www.eceee.org

US New Refrigerator kWh/year Declined 74% Annual Drop from 1974 to 2001 = 5% Per Year

Real Prices dropped while efficiency increased

United States Refrigerator Use v. Time

Low-Hanging Energy-Efficiency is a Renewable Resource

Updated 2001 standards exceeded the maximum technologically feasible level of a few years earlier.

The maximum technology kWh/a in refrigerators changed 14% in 6 years (2.5%/a) from 495 kWh/a (1989) to 425 kWh/a (1995)

Average standards, % change, effective date: 690 kWh/a, -27%, 1993 475 kWh/a, -30%, 2001

Why Is this Example Important?

- Unit energy consumption per new refrigerator decreased at average rate of 5%/year for 27 years
- •Absolute amount of energy consumption – *and carbon dioxide emissions* – for household refrigeration decreased
 - Technology and policy together achieved this result
 - Lessons learned can be applied to other energy technologies and services

National Estimates of Cost-Effective Energy Efficiency

Estimate	Source
20% Reduction by 2020-2025 compared to BAU	Five National Labs – Scenario for a Clean Energy Future – 2000
23% Reduction by 2025 compared to BAU	American Solar Energy Society - 2007

NEW OPPORTUNITY !

- California's Water-Energy Relationship, 2005 found new potential electricity savings from water conservation
 - Equivalent to current three-year plan for CA utilities
 - Est. cost per kWh about 50% lower than electric plan

Potential 19% National Lighting Savings

Sector	Lighting Upgrade Measure	Estimated Energy/Cost Savings	Carbon Reduction (MMTCe)	Equivalent Cars Removed
Offices	Replace T-12 magnetic with controlled T-8 electronic	35 BkWh \$2.6 billion	7	4.7 million
Homes	Replace Incandescent Bulbs with Energy-Efficient Lamps	55 BkWh \$4 billion	11	7.3 million
Stores	Replace PAR/R-lamps with Ceramic Metal Halide	10 BkWh \$750 million	2	1.3 million
Roadways	Replace Mercury lamps with modern HIDs	20 BkWh \$1.5 billion	4	2.7 million
Total	All Measures	120 BkWh \$10 billion	24	16 million

Modernizing Our Nation's Lighting

Billion kilowatt-hours

Cost of Conserved Energy (CCE) is Lower than Electricity Price for Many Energy Efficiency Increases (Commercial, 2010)

Source: National Commission on Energy Policy, 2004

Cost of Conserved Energy (CCE) is Lower Than Electricity Price for Many Energy Efficiency Increases (Residential, 2010)

Source: National Commission on Energy Policy, 2004

EE reduces carbon and saves money

Global cost curve for greenhouse gas abatement measures beyond 'business as usual'; greenhouse gases measured in GtC02e1

Source: McKinsey Global Institute, 2007

Efficiency and carbon-neutral supply are complements

Current Best Practices Can Reduce Emissions from New Buildings by at Least 70% for Homes and 60% for Offices

- DOE's Building America has a goal of achieving 70% energy consumption reduction by 2020 compared to code requirements
- Leadership in Energy & Environmental Design (LEED) certifies energy reductions of up to 60% for new commercial buildings, compared to code requirements

California plans to achieve <u>zero net energy</u> for new Residential in 2020, Commercial in 2030

Whole Building Approach (with PV) Can Save **More Than Just Equipment Improvements**

- NREL results show it is possible today to build a 2592 ft2 home in Sacramento at incremental cost about 10 above code to a chieve:
 - zero peak coon a de
 - reduce annual heating energy 70%
 - reduce annual cooling energy
 reduce total source energy use

Source: Ren Anderson, C Christensen, S Horowitz, "Program Design Analysis using BEopt Building Energy Optimization Software: Defining a Technology Pathway Leading to New Homes with Zero Peak Cooling Demand" (Preprint Conference Paper NREL/CP-550-39827), May 2006

Additional Savings from Systems

- Efficient *data centers* (electricity and cooling)
- *Digital networks*: opportunities to maximize comfort and utility while minimizing energy
- Combined heat and power can improve efficiency and reduce peak
- Neighborhood systems (e.g., *district heating*)
- *Micro-grids* provide local power
- *Demand response* incorporates price signals

California Policies affecting EE

- CEC Research, Building codes, Standards
- CPUC regulate utilities and rates
 - PRIORITY: Efficiency, demand response, renewables, clean fossil
 - "Big, Bold" utility programs (new residential, new commercial, HVAC)
 - Industrial, existing commercial, existing residential
- CARB implementing AB32

Federal Policies affecting EE

- Labels
 - EnergyGuide
 - Energy Star

- Mandatory Energy Performance Standards (MEPS)
 - US
 - Others (China, Australia, EU, Canada, Mexico)
- Tax credits
 - To manufacturers
 - To consumers
- (FUTURE) GHG cap-and-trade or taxes/fees

R&D investment in US buildings sector has been low

- Private "Clean Tech" investing is increasing
 - \$5.18 B in 2007, up from \$3.6B in 2006
 - energy efficiency
 - water efficiency
 - renewable energy
- Annualized returns in 2007
 - CTIUS 42.9%, NASDAQ 10.6%, S&P 500 5.5%
 - Low-hanging fruit
- Innovation will increase

Increasing Financial and Political Pressure for EE

- GHG markets (\$30 B in 2006)
 - EU, Kyoto
 - Chicago Climate Exchange (CCX) (voluntary)
- Global GHG negotiations Kyoto, Bali
- US legislation: Draft energy bills
 - E.g., Lieberman-Warner: cap and trade
- States
 - RGGI 2009
 - CA 2012
 - Western Climate Initiative
 - others

Global Potential of Energy Efficiency Standards and Labeling Programs (DRAFT)

Across all countries, potential to reduce

GHG Emissions	Residential	Commercial
From electricity	25%	11%
From fuels	8%	3%
CO2 Gt 2030	1.5	0.4
(cumulative)	(11)	(3.6)

Equivalent to 25% of IPCC "zero cost" potential in 2020, 33% in 2030. The rest can be achieved with building codes, utility programs, incentives, etc.

> M. McNeil, V. Letschert, S. de la Rue du Can, LBNL- personal communication, February 27, 2008 Work in progress for Collaborative Labeling and Appliance Standards Programs (CLASP)

AN EXAMPLE OF ONE BUILDING

"Greening the Capitol"

Goal: Reduce the impact of operations of the Capitol complex to "carbon neutral"

Conclusions

- Energy efficiency (EE) has proven itself for thirty years
 - Technologically feasible
 - Economically justified

Years of World Class Science

1931-2000

.....

- Public and private investment will increase
 - Clean tech venture capital investments are up
 - EE is fastest, most cost-effective option to reduce carbon emissions
- Low-hanging energy efficiency is a renewable resource

Suggested Reading

- American Solar Energy Society, 2007. "Tackling Climate Change in the U.S."
- Gallagher, K.S., J.P. Holdren, and A.D. Sagar, "Energy-Technology Innovation" in *Ann. Rev. Environ. Resour.* 2006, 31: 193-237
- Interlaboratory Working Group on Energy-Efficient and Clean-Energy Technologies, 2000. "Scenarios for a Clean Energy Future"
- McKinsey Global Institute, 2007. "Curbing Global Energy Demand Growth: The Energy Productivity Opportunity"
- National Research Council, 2001. "Energy Research at DOE: Was It Worth It?"

