Heating, Ventilating, & Air-Conditioning: Diagnostics & Controls to Improve Air-Handling System Performance

Craig Wray, P.Eng.

Indoor Environment Department
Lawrence Berkeley National Laboratory

Tel: 510-486-4021 Email: CPWray@lbl.gov http://epb.lbl.gov

American Physical Society Short Course
Physics of Sustainable Energy: Using Energy Efficiently and Producing It Renewably
UC Berkeley, 1 March 2008

FLOW MATE, G - CFM X 1000

Acknowledgments

- Assistant Secretary for Energy Efficiency and Renewable Energy, Office of the Building Technologies Program, U.S. Department of Energy
- California Energy Commission PIER Program
- Max Sherman, Iain Walker, Darryl Dickerhoff (LBNL)
- Cliff Federspiel (Federspiel Controls)

Overview

- Background
 - Opportunities for improvement
- Duct Leakage Diagnosis
 - Measuring leakage flows using the DeltaQ test
- Duct Pressure Diagnosis & Control
 - Demand-based reset with DDC/non-DDC controls
- Ventilation Control
 - Intermittent ventilation and efficacy

Opportunities for Improvement

- Duct Leakage and Operating Pressure
 - Thousands of field assembled joints
 - System pressures not uniform or constant; impossible to know location of each leak and pressure difference across each leak
 - Unnecessarily closed dampers restrict flow
 - Large energy savings possible from sealing ducts and optimizing duct static pressures

Ventilation

- Standards specify constant ventilation rates
- Energy intensive process; sometimes can reduce IAQ
- Intermittent ventilation more appropriate in some cases

Overview

- Background
 - Opportunities for improvement
- Duct Leakage Diagnosis
 - Measuring leakage flows using the DeltaQ test
- Duct Pressure Diagnosis & Control
 - Demand-based reset with DDC/non-DDC controls
- Ventilation Control
 - Intermittent ventilation and efficacy

Why Use DeltaQ Duct Leakage Test?

- Fast and easy
 - No register covering (less damage potential)
 - Coincidentally measures envelope leakage
 - Uses familiar equipment (blower door)
 - Self-diagnostic for uncertainty
 - Can be automated
- Accurate
 - Leaks to outside under operating conditions
- BUT...
 - Need a computer
 - Need to operate central blower

DeltaQ Airflows and Pressures

Temperature Corrected Fan Flow (CFM) 1100₁ 1000 900 800 700 600 500 400 300 200 100 -100 -200 -300 -400 -500 -600 -700 -800

Non-adjusted House Pressure (Pa)

DeltaQ Test Data

- Green = blower on
- Red = blower off
- Difference = DeltaQ

50

60

-70

DeltaQ Model

P = Envelope added pressure

 P_s = Supply Pressure

 P_r = Return Pressure

C_s=Supply leak coefficient

C_r=Return leak coefficient

Q_s=Supply leak flow

Q_r=Return leak flow

$$DeltaQ(P)=Q_{on}(P)-Q_{off}(P) \qquad Q=C(P)^{n}$$

$$Q_{on}(P)=Q_{env}(P) + C_s(P+Ps)^{ns} + C_r(P-Pr)^{nr}$$

$$Q_{off}(P)=Q_{env}(P) + C_s(P^{ns}) + C_r(P^{nr})$$

$$DeltaQ(P)=C_s((P+P_s)^{ns}-P^{ns}) + C_r((P-P_r)^{nr}-P^{nr})$$

DeltaQ(P)=
$$Q_s((1+P/P_s)^{ns}-(P/P_s)^{ns}) - Q_r((1-P/P_r)^{nr}+(P/P_r)^{nr})$$

Pressure Scanning Error Surface

Duct Flow Resistance Correction

Difference between flow through air handler and flow through ducts

Flow through leak

$$1 - \left(1 - \frac{Q_{r,s}}{Q_{ah}}\right) \left[1 \pm \frac{\delta P_{r,s}^{on}}{P_{r,s}}\right]^{1/2} = \frac{Q_{r,s}}{Q_{ah}} \left[1 \mp \frac{P - \delta P_{r,s}^{on}}{P_{r,s}}\right]^{n_{r,s}}$$

Overview

- Background
 - Opportunities for improvement
- Duct Leakage Diagnosis
 - Measuring leakage flows using the DeltaQ test
- Duct Pressure Diagnosis & Control
 - Demand-based reset with DDC/non-DDC controls
- Ventilation Control
 - Intermittent ventilation and efficacy

Variable-Air-Volume System Schematic

$$W = \frac{Q \cdot \Delta P}{\eta_{system}} \approx \frac{Q^{(1+1/n)}}{\eta_{system}}$$

Upstream Leakage

VAV System Control

Duct Static Pressure Reset Issues

- DDC systems with reset capability already exist, but suffer from:
 - Inaccurate, open-loop position measurement
 - Failures at terminal boxes
 - Limited bandwidth and limited programming capabilities
- Many systems have pneumatic terminal controls
- Using total supply airflow signal from airflow station expands reset applicability
- Aggregation of terminal box flows makes control more robust to single terminal failure

Diagnostic Principle

• Terminal flows are regulated by thermostat, independent of duct static pressure

Test Procedure

- Start at high pressure
- Incrementally lower pressure
- Record flow signal at each step

Complicating Issues

- Flow stabilizes slowly
- Zone temperatures can change
- Noisy measurements
- Ducts leak (pressure-dependent)

Diagnostic: Dual-Model Estimation

- Model components
 - 1. Constant component
 - 2. Time-varying component
 - 3. Leakage flow
 - 4. Starved behavior
- "In-Control":

$$Q_c = Q_0 + C_t T + C_p P^N$$

• "Starved":
$$Q_S = \left(C_0 P^N + C_1 P^{1+N} + C_2 P^{2+N}\right) \left(1 + \frac{C_t T}{Q_0}\right) + C_p P^N$$

• At critical pressure, both models predict same flow; solve for transition using least squares fit

Haas School of Business

UCOP

County of Alameda

Overview

- Background
 - Opportunities for improvement
- Duct Leakage Diagnosis
 - Measuring leakage flows using the DeltaQ test
- Duct Pressure Diagnosis & Control
 - Demand-based reset with DDC/non-DDC controls
- Ventilation Control
 - Intermittent ventilation and efficacy

Intermittent Ventilation: When Steady Won't Always Do

- Ventilation (for acceptable IAQ) should not always be constant
- May be periods of the day when outdoor air (OA) quality is poor and one wishes to reduce amount of OA entering building
- Economizer operation can over-ventilate a space from IAQ point of view; energy savings can be achieved by reducing ventilation rates at other times to account for over-ventilation
- Demand charges or utility peak loads may make it advantageous to reduce ventilation for certain periods of the day
- Some HVAC equipment may make cyclic ventilation more attractive than steady-state ventilation
 - Example: residential or small commercial systems that couple ventilation to heating and cooling system operation

What's The Problem?

- Constant target ventilation (A_{eq})
- Intermittent ventilation with cycle time (T_{cycle}) , over-ventilation (A_{high}) for fractional time f_{high} , and under-ventilation (A_{low}) for fractional time f_{low}
- Equivalency = same dose for constant contaminant source
 - Sherman & Wilson (1986); Std 136
- Means to demonstrate equivalency not obvious:
 - Designers want flexibility to use intermittent ventilation, but also want to follow standards & guidelines
 - Average not always same as constant

Efficacy is Link

- Provide calculation method to assess equivalency
 - Find the temporal ventilation effectiveness ("efficacy")
 of a given pattern of ventilation

• Definition:
$$\mathcal{E} = \frac{A_{eq}}{f_{low}A_{low} + (1 - f_{low})A_{high}}$$

• Typical Use:
$$A_{high} = \frac{A_{eq} / \varepsilon - f_{low} A_{low}}{(1 - f_{low})}$$

Hyperbolic Cotangent?

$$\varepsilon = \frac{1 - f_{low}^2 \mathbf{N} \cdot \coth(\mathbf{N} / \varepsilon)}{1 - f_{low}^2}$$

- Nominal Turnover: $N = \frac{(A_{eq} A_{low}) \cdot T_{cycle}}{2}$
- Fraction of time under-ventilated: f_{low}
- Recursive equation numerical solution
- Use efficacy for design

Air Change Rates & Turn-Over Times

ach (1/h)	Turn-Over Time (h)	DESCRIPTION
0.15	6.67	Infiltration rate of <i>new homes</i>
0.25	4.00	Infiltration rate of commercial buildings
0.3	3.33	Ventilation requirement of <i>almost empty commercial buildings</i> [from Std 62.1-2004]
0.5	2.00	Office space requirement [from Std 62.1-2004]; also large home [from Std 62.2-2004]
0.7	1.43	Ventilation requirement for <i>small homes</i>
1.0	1.00	Infiltration rate of <i>older homes</i>
2.0	0.50	Conference room requirement [from Std 62.1-2004]
4.0	0.25	High density space (e.g., theater lobby)

Efficacy Trends

Efficacy for Different Under-Ventilation Fractions

Notch Ventilation at Various Air Change Rates

90% Efficacy at Various Air Change Rates

Maximum Under-Ventilation

Capacity Required for 0.35 ach

Questions?

- Background
 - Opportunities for improvement
- Duct Leakage Diagnosis
 - Measuring leakage flows using the DeltaQ test
- Duct Pressure Diagnosis & Control
 - Demand-based reset with DDC/non-DDC controls
- Ventilation Control
 - Intermittent ventilation and efficacy

