Development of MERESS model - developing system models of stationary combined heat and power (CHP) fuel cell systems (FCS) for reduced costs and greenhouse gas (GHG) emissions

TitleDevelopment of MERESS model - developing system models of stationary combined heat and power (CHP) fuel cell systems (FCS) for reduced costs and greenhouse gas (GHG) emissions
Publication TypeConference Paper
Year of Publication2008
AuthorsColella W, Schneider S, Kammen DM, Jhunjhunwala A, Teo N
Conference Name6th International Fuel Cell Science, Engineering & Technology Conference
Date Published06/2008
Conference LocationDenver, CO
Keywordscarbon dioxide (CO2) emissions, cogeneration, combined heat and power (CHP), cost, distributed energy systems, electricity load following (ELF), fixed heat-to-power ratio (FHP)., fuel cell system (FCS), greenhouse gas emissions (GHG), heat load following (HLF), heat recovery, low-voltage electricity distribution networks, Maximizing Emission Reductions and Economic Savings Simulator (MERESS) optimization tool, networked (NW), networks, no load following (NLF), operating strategy, optimization, profitability, stand alone (SA), thermal distribution networks, variable heat-to-power ratio (VHP)
Abstract

Part I:

Stationary combined heat and power (CHP) fuel cell systems (FCSs) can provide electricity and heat for buildings, and can reduce greenhouse gas (GHG) emissions significantly if they are configured with an appropriate installation and operating strategy. The Maximizing Emission Reductions and Economic Savings Simulator (MERESS) is an optimization tool that was developed to allow users to evaluate avant-garde strategies for installing and operating CHP FCSs in buildings. These strategies include networking, load following, and the use of variable heat-to-power ratios, all of which commercial industry has typically overlooked. A primary goal of the MERESS model is to use relatively inexpensive simulation studies to identify more financially and environmentally effective ways to design and install FCSs. It incorporates the pivotal choices that FCS manufacturers, building owners, emission regulators, competing generators, and policy makers make, and empowers them to evaluate the effect of their choices directly. MERESS directly evaluates trade-offs among three key goals: GHG reductions, energy cost savings for building owners, and high sales revenue for FCS manufacturers. MERESS allows users to evaluate these design trade-offs and to identify the optimal control strategies and building load curves for installation based on either 1) maximum GHG emission reductions or 2) maximum cost savings to building owners.

Part II:
The Maximizing Emission Reductions and Economic Savings Simulator (MERESS) is an optimization tool that allows users to evaluate avant-garde strategies for installing and operating combined heat and power (CHP) fuel cell systems (FCSs) in buildings. This article discusses the deployment of MERESS to show illustrative results for a California campus town, and, based on these results, makes recommendations for further installations of FCSs to reduce greenhouse gas (GHG) emissions. MERESS is used to evaluate one of the most challenging FCS types to use for GHG reductions, the Phosphoric Acid Fuel Cell (PAFC) system. These PAFC FCSs are tested against a base case of a CHP combined cycle gas turbine (CCGT). Model results show that three competing goals (GHG emission reductions, cost savings to building owners, and FCS manufacturer sales revenue) are best achieved with different strategies, but that all three goals can be met reasonably with a single approach. According to MERESS, relative to a base case of only a CHP CCGT providing heat and electricity with no FCSs, the town achieves the highest 1) GHG emission reductions, 2) cost savings to building owners, and 3) FCS manufacturer sales revenue each with three different operating strategies, under a scenario of full incentives and a $100/tonne carbon dioxide (CO2) tax (Scenario D). The town achieves its maximum CO2 emission reduction, 37% relative to the base case, with operating Strategy V: stand alone operation (SA), no load following (NLF), and a fixed heat-to-power ratio (FHP) [SA, NLF, FHP] (Scenario E). The town’s building owners gain the highest cost savings, 25%, with Strategy I: electrically and thermally networked (NW), electricity power load following (ELF), and a variable heat-to-power ratio (VHP) [NW, ELF, VHP] (Scenario D). FCS manufacturers generally have the highest sales revenue with Strategy III: NW, NLF, with a fixed heat-to-power ratio (FHP) [NW, NLF, FHP] (Scenarios B, C, and D). Strategies III and V are partly consistent with the way that FCS manufacturers design their systems today, primarily as NLF with a FHP. By contrast, Strategy I is avant-garde for the fuel cell industry, in particular, in its use of a VHP and thermal networking. Model results further demonstrate that FCS installations can be economical for building owners without any carbon tax or government incentives. Without any carbon tax or state and federal incentives (Scenario A), Strategy I is marginally economical, with 3% energy cost savings, but with a 29% reduction in CO2 emissions. Strategy I is the most economical strategy for building owners in all scenarios (Scenarios A, B, C, and D) and, at the same time, reasonably achieves other goals of large GHG emission reductions and high FCS manufacturer sales revenue. Although no particular building type stands out as consistently achieving the highest emission reductions and cost savings (Scenarios B-2 and E-2), certain building load curves are clear winners. For example, buildings with load curves similar to Stanford’s Mudd Chemistry building (a wet laboratory) achieve maximal cost savings (1.5% with full federal and state incentives but no carbon tax) and maximal CO2 emission reductions (32%) (Scenarios B-2 and E-2). Finally, based on these results, this work makes recommendations for reducing GHG further through FCS deployment.

AttachmentSize
Read Part I477.11 KB
Read Part II221.48 KB