EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES

TIMOTHY E. LIPMAN¹ and MARK A. DELUCCHI²

¹Energy and Resources Group, University of California, RAEL – 4152 Etcheverry Hall, Berkeley, CA 94720, U.S.A.
²Institute of Transportation Studies, University of California, 1 Shields Avenue, Davis, CA 95616, U.S.A.

Abstract. This paper provides estimates of emissions of two important but often not wellcharacterized greenhouse gas (GHG) emissions related to transportation energy use: methane (CH₄) and nitrous oxide (N₂O). The paper focuses on emissions of CH₄ and N₂O from motor vehicles because unlike emissions of CO₂, which are relatively easy to estimate, emissions of CH₄ and N₂O are a function of many complex aspects of combustion dynamics and of the type of emission control systems used. They therefore cannot be derived easily and instead must be determined through the use of published emission factors for each combination of fuel, end-use technology, combustion conditions, and emission control system. Furthermore, emissions of CH₄ and N₂O may be particularly important with regard to the relative CO₂-equivalent GHG emissions of the use of alternative transportation fuels, in comparison with the use of conventional fuels. By analyzing a database of emission estimates, we develop emission factors for N₂O and CH₄ from conventional vehicles, in order to supplement recent EPA and IPCC estimates, and we estimate relative emissions of N₂O and CH₄ from different alternative fuel passenger cars, light-duty trucks, and heavy-duty vehicles.

1. Introduction

The use of energy accounts for a major fraction of all anthropogenic emissions of greenhouse gases (GHGs) (IPCC, 1996). In most industrialized countries, transportation fuel use produces a major fraction of all energy-related emissions. In the U.S., for example, emissions of carbon dioxide (CO₂) from the production and use of motor-vehicle fuels account for as much as 30% of CO₂ emissions from the use of all fossil fuels (DeLuchi, 1991). The production and use of fuels for transportation also results in emissions of other GHGs, including methane (CH₄) and nitrous oxide (N₂O). In light of this, and in the face of growing concern about global climate change, analysts have been evaluating long-term transportation and energy policies for their potential impact on global climate.¹ In addition, a specific set of GHG emission reduction goals, known as the Kyoto Protocol, was established during a meeting in Kyoto, Japan, in December, 1997. The international agreement reached at this summit meeting calls for the U.S. to reduce GHG emissions by 7%, relative to 1990 levels, between 2008 and 2012.²

Emission reduction strategies based on alternative fuels for motor vehicles may play an important role in efforts to meet GHG emission-reduction targets. For

Climatic Change **53:** 477–516, 2002. © 2002 Kluwer Academic Publishers. Printed in the Netherlands. example, promising strategies for powering motor vehicles with reduced GHG emissions include expanded use of natural gas as a fuel and as a feedstock for methanol and hydrogen fuel production, biomass as a feedstock for methanol and ethanol fuel production, and solar, wind, and natural gas-produced electricity for battery electric vehicles. Already, vehicles powered by compressed natural gas, propane, methanol-based fuel blends, and electricity are beginning to be used in urban areas to improve air quality.³ In the future, the combination of these low-carbon fuels with emerging internal-combustion engine/electric hybrid and fuel cell/electric hybrid drivetrain technologies offers the potential for significant reductions in per-mile GHG emissions from motor vehicles.

The emissions of CH₄ and especially N₂O can contribute significantly to total CO₂-equivalent emissions of GHGs from the lifecycle of conventional and alternative transportation fuels and technologies. For example, these two gases together account for about 15% of the lifecycle GHG emissions impact of conventional gasoline vehicles, and up to 43% of the lifecycle GHG impact of some alternative fuel vehicle (AFV) types (see Table I). Thus, while most attention has been focused on emissions of CO₂ as the main culprit in contributing to the increase in radiative forcing from the build-up of GHGs, emissions of these non-CO₂ GHGs are also important. In fact, NASA scientists Hansen et al. (2000) have recently argued for an alternative strategy for mitigating potential future climate change that focuses on controlling emissions of non-CO₂ GHGs and black soot aerosol. They argue that this strategy is warranted because of the significant impact of non-CO₂ GHGs in contributing to radiative forcing, which taken together approximately equal the impact of CO₂ (Hansen et al., 2000).

The purpose of this paper is to provide estimates of motor-vehicle emissions of the two most important GHGs after CO₂: CH₄ and N₂O. We focus on CH₄ and N₂O because for many energy-use technologies - and particularly alternativefuel vehicles - emissions of CH₄ and especially N₂O are not well characterized, whereas emissions of CO₂ from fuel combustion are relatively easy to estimate.⁴ In contrast, combustion emissions of CH₄ and N₂O are a function of many complex aspects of combustion dynamics (such as temperature, pressure, and air-to-fuel ratio) and of the type of emission control systems used, and hence cannot be derived from one or two basic characteristics of a fuel. Instead, one must rely ultimately on measured emissions for each combination of fuel, end-use technology, combustion conditions, and emission control system. Although the U.S. Environmental Protection Agency (EPA) (1999, 1995), the Energy Information Administration (EIA) (1998), and the Intergovernmental Panel on Climate Change (IPCC) (1997) attempt to provide CH₄ and N₂O emission factors for the purpose of estimating GHG emission inventories, in many instances the databases and documentation are sparse. There are few references to emissions of GHGs from the use of alternative fuels, and no single source that reports the data that do exist. For example, the revised IPCC (1997) Guidelines on emissions of GHGs reports that N₂O emission factors for alternative-fuel vehicles are 'not available'. The IPCC (1997) does re-

Table I

The percentage contribution of individual GHGs to lifecycle $\rm CO_2$ -equivalent emissions for alternative transportation fuels for light-duty vehicles

A. Internal-combustion-engine vehicles using fossil fuels								
Fuel \rightarrow	Conv. gasoline	Reform. gasoline	Low-S Diesel	85% MeOH	Comp. NG	Comp. H ₂	LPG	
$Feedstock \rightarrow$	Oil	Oil	Oil	NG	NG	NG	NG, oil	
Vehicular CO ₂	46%	47%	53%	42%	40%	1%	50%	
Lifecycle CO ₂	76%	77%	82%	77%	67%	92%	76%	
CH ₄	3%	3%	3%	5%	17%	7%	4%	
N ₂ O	12%	12%	10%	12%	11%	1%	14%	
CO	9%	7%	6%	6%	6%	2%	6%	
NMOC	1%	1%	0%	1%	0%	0%	0%	
NO ₂	-1%	-1%	-2%	-1%	-1%	-1%	-1%	
SO ₂	-1%	-1%	-1%	-1%	-1%	-2%	-1%	
PM	-0%	-0%	-1%	-0%	-0%	-0%	-0%	
HFC-134a	1%	1%	2%	1%	1%	2%	1%	

B. Internal-combustion-engine vehicles using biomass-derived fuels

$\text{Fuel} \rightarrow$	90% EtOH	90% EtOH	85% MeOH	
$Feedstock \rightarrow$	Corn	Wood, grass	Wood	
Vehicular CO ₂	6%	14%	23%	
Lifecycle CO ₂	66%	43%	58%	
CH ₄	5%	7%	4%	
N ₂ O	24%	36%	26%	
CO	6%	14%	13%	
NMOC	1%	2%	1%	
NO ₂	-1%	-2%	-2%	
SO ₂	-2%	-2%	-2%	
PM	-1%	-1%	-1%	
HFC-134a	1%	3%	2%	

C. Electric-drive vehicles (battery-powered and fuel-cell powered)

Power source \rightarrow	Battery	Fuel cell	Fuel cell	Fuel cell
$\text{Fuel} \rightarrow$	Grid power	100% MeOH	Comp. H ₂	Comp. H ₂
Feedstock \rightarrow	64% coal	NG	Water/ nuclear	NG
Vehicular CO ₂	0%	44%	1%	1%
Lifecycle CO ₂	99%	92%	94%	92%
CH ₄	4%	6%	4%	6%
N ₂ O	1%	1%	1%	1%

Table I

	(Continued)		
Power source \rightarrow	Battery	Fuel cell	Fuel cell	Fuel cell
$Fuel \rightarrow$	Grid power	100% MeOH	Comp. H ₂	Comp. H ₂
$Feedstock \rightarrow$	64% coal	NG	Water/	NG
			nuclear	
СО	0%	0%	0%	0%
NMOC	0%	0%	0%	0%
NO ₂	-0%	-0%	-1%	-0%
SO ₂	-4%	-1%	-3%	-2%
PM	-0%	-0%	-1%	-0%
HFC-134a	1%	2%	5%	3%

Source: Tl	ne lifecycle	energy	use and	emissions	model	documented	in	Delucchi	(1997,	1999).	The r	nodel
uses the C	H_4 and N_2	O emissi	ion facto	rs presente	d here.							

Notes: conv. = conventional; reform = reformulated; low-S = low-sulfur; MeOH = methanol; comp. = compressed; NG = natural gas; H_2 = hydrogen; LPG = liquefied petroleum gas; EtOH = ethanol.

For each GHG *i*, the percentage shown is equal to: $\frac{\text{LCE}_i \cdot \text{CEF}_i}{\sum_i \text{LCE}_i \cdot \text{CEF}_i} \cdot 100$, where $\text{LCE}_i = \text{lifecycle}$ (or, in the case of 'vehicular CO₂', vehicular) emissions of GHG *i* and $\text{CEF}_i = \text{the CO}_2$ -equivalency factor for GHG *i*. The 'lifecycle' here includes all emissions from the vehicles, upstream fuel and feedstock production and distribution activities, the manufacture of vehicles, and the lifecycle of materials used in vehicles. Lifecycle CO₂ includes vehicular CO₂, plus CO₂ from other stages of the vehicle and fuel lifecycle. The 'CO₂ equivalent' mass of a non-CO₂ GHG is the mass amount of the gas that would have the same time-integrated effect, on climate or on some measure of the welfare impact of climate change, as would one mass unit of CO₂ emitted at the same time. The CO₂-equivalency factors used in the model runs that produced these results are:

 $\frac{\rm NMHC}{\rm 4.0+CO_2} \frac{\rm CH_4}{\rm 20.1} \frac{\rm CO}{\rm 4.06} \frac{\rm N_2O}{\rm 355.0} \frac{\rm NO_2}{\rm -2.4} \frac{\rm SO_2}{\rm -14.2} \frac{\rm PM}{\rm -5.2} \frac{\rm HFC-134a}{\rm 2,000}$

In the case of NMHCs, the 'CO₂' in ' $4.0 + CO_2$ ' is the effect of oxidizing the NMHC to CO₂, which varies with the C content of the NMHCs. Note that in the case of CO, almost half of the CEF is due to the relatively rapid oxidation of CO to CO₂.

port CH₄ factors for alternative fuels, but does not discuss the source or quality of the factors.

This paper addresses some of these issues, by providing a database of CH_4 and N_2O emission estimates and using the data to suggest approximate emission factors for different vehicle types, and it is organized as follows. First, N_2O emissions from motor vehicles are examined. Following a discussion of N_2O formation mechanisms, key variables, and associated issues, emissions estimates are presented based on the available data (shown in Table A-I). Next, CH_4 emissions are examined in the same manner, concluding with emissions factor estimates based on emission data for different vehicle types (shown in Table A-II). Finally, the emissions estimates derived from the data are compared to past estimates by the EPA and IPCC, and approximate relative emissions from different vehicle types are discussed.

2. Nitrous Oxide (N₂O) Emissions from Motor Vehicles

Emissions estimates for N_2O from motor vehicles have been the subject of controversy. The EPA Office of Mobile Sources commented recently that the contribution of N_2O from mobile sources to the total estimate of nitrous oxide emissions in the U.S. jumped from 0.5%, in the EPA GHG emissions inventory published in 1997, to 3.0% in the 1998 draft *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990–1996* (U.S. EPA, 1998). The Office of Mobile Sources notes that this increase was due to much higher N_2O emissions factors – the ones, in fact, suggested by the latest IPCC (1997) *Guidelines* for U.S. emissions inventories – rather than from a significant increase in vehicle miles traveled (VMT). They recommended the use of a revised, much lower set of N_2O emissions factors (Michaels, 1998), which the EPA (1999) and the EIA (1998a) adopted in their latest emission inventories.

2.1. MOTOR VEHICLE N_2O EMISSIONS FORMATION MECHANISMS

 N_2O is emitted directly from motor vehicles, but the details of its formation are complex and depend importantly on the type of emission control system used. N_2O emissions from catalyst-equipped gasoline light-duty vehicles (LDVs) depend significantly on the type and temperature of catalyst, rather than total NO_x levels or fuel nitrogen content, because gasoline contains relatively little nitrogen, and fuel NO_x and fuel N_2O emissions from autos are low. The high temperatures and pressures of the internal-combustion engine are sufficient to form NO_x thermally, but evidently are inefficient for production of N_2O (Hao, 1987). As a result, cars without catalytic converters produce essentially no net N_2O . On the other hand, Weiss and Craig (1976) predicted N_2O exhaust concentrations of up to 400 ppmv from autos with platinum reduction catalysts only, according to the reactions:

$$6NO + 4NH_3 \rightarrow 5N_2O + 6H_2O \text{ and } 2NO + H_2 \rightarrow N_2O + H_2O.$$
(1)

Seinfeld (in Pierotti and Rasmussen, 1976) suggests that N_2O production in 3-way catalysts (those that oxidize HC and CO to H_2O and CO_2 , and reduce NO to N) may occur by a different route:

$$NH_3 + 2O_2 \rightarrow N_2O + 3H_2O$$
. (2)

Alternatively, NO can be reduced by CO, rather than H_2 (Ryan and Srivastava, 1989; Prigent and Soete, 1989; Dasch, 1992):

$$2NO + CO \rightarrow N_2O + CO_2. \tag{3}$$

 N_2O formed in this last way also may be reduced back to N_2 (Dasch, 1992) via:

$$N_2O + CO \rightarrow N_2 + CO_2. \tag{4}$$

2.2. N_2O formation and emissions control system catalyst type

Prigent and De Soete (1989) conclude that the N₂O is formed at relatively low catalyst temperatures, and at higher temperatures the N₂O itself is destroyed. They present data that N₂O formation, via reduction by CO over a metal catalyst, peaks at 120 ppmv at 500 K and drops to zero on either side, at 400 K and 650 K. Meanwhile, Prigent (in Ryan and Srivastava, 1989) shows that N₂O formation across a 3-way platinum-rhodium catalyst peaking at 180 ppmv at about a 635 K catalyst inlet temperature (which implies a slightly cooler temperature across the catalyst). Odaka et al. (1996) examined N₂O formation across different types of catalysts, and found that catalysts using different noble metals exhibit different N₂O formation characteristics. Fresh and aged Pt/Rh catalysts exhibited peak N₂O formation at about 573 K, while a fresh Pd catalyst exhibited peak formation at about 523 K. The peak N₂O formation zone for the Pd and Pd/Rh catalysts shifted with age, such that the peak for the aged catalysts occurred at about 623 K (Jimenez et al., 1997).

The dependence of N_2O formation on temperature causes higher emissions from a cold-start test than a hot-start test, due to relatively high emissions prior to the onset of catalyst activity (Prigent and Soete, 1989; Jimenez et al., 1997). For example, Lindskog (in Ryan and Srivastava, 1989) has found that after a cold start the concentration of N_2O in the exhaust pipe, after the catalyst, is two times higher than the concentration before the catalyst. This has important implications: electrically heated catalysts, which might be used to reduce cold-start HC emissions, probably will reduce N_2O emissions too.

Although lower *catalyst* temperatures almost certainly increase N_2O emissions (Ryan and Srivastava, 1989; Dasch, 1992), colder ambient temperatures may increase or decrease N_2O emissions. This occurs because once a vehicle is warmed up, the temperature of the catalyst is not directly related to the air temperature, but rather is determined by the temperature of the exhaust gases, which are determined by engine load and combustion conditions.

2.3. N_2O emissions and fuel characteristics

The data we have analyzed (see Table A-I) show that some of the lowest N_2O emissions among gasoline vehicles have been observed in California (the Jimenez et al. (1997) data), while higher emissions have generally been observed among vehicles operated in other states. Some of the highest emissions yet reported are for a set of vehicles that were tested in Canada, with average emissions of well over 100 mg/mi (the Ballantyne et al. (1994) data). One explanation for these differences has been suggested by Michaels (1998). The vehicles tested in Canada were tested using fuel that contained 700 ppm sulfur, which is more than twice the typical level in U.S. gasoline, and several times the level found in the reformulated gasoline that is currently used in California. In tests conducted at the National Vehicle and Fuel

482

Emissions Laboratory, the EPA found that N_2O emissions were substantially higher when vehicles were operated using a fuel with a sulfur content of 285 ppm than they were when the vehicles were operated on Indolene, a fuel with a sulfur content of only 24 ppm. For example, one vehicle produced 54 mg/mi of N_2O using the standard 285 ppm sulfur fuel, and 39 mg/mi of N_2O when Indolene was used. Also, a high emitting vehicle that produced 227 mg/mi of N_2O on the 285 ppm sulfur fuel produced only 115 mg/mi of N_2O on Indolene. The EPA found that increasing the sulfur content of Indolene was by far the most important variable, among the fuel characteristics studied, in reducing the catalytic reduction of NOx, and the agency suspects that this also increases production of N_2O (Michaels, 1998).

In summary, fuel sulfur content appears to be an important variable for N_2O production. The Ballantyne et al. (1994) data may not be applicable to situations in which lower sulfur fuels are used, because high levels of fuel sulfur seem to decrease the effectiveness of NO_x conversion and result in higher emissions of N_2O .

2.4. N_2O Emissions and drive cycle

The type of drive cycle appears to influence N_2O as well, probably because it affects the temperature across the catalyst. N_2O emissions are consistently lower in the highway driving cycle, when the catalyst is warmed up, than in the FTP (Dasch, 1992).

Based on tests of four gasoline vehicles and one diesel vehicle, Sasaki and Kameoka (1992) show that for gasoline LDVs, N_2O emissions decrease with higher vehicle speeds (over the range from 60 km/hr to 100 km/hr) and higher incline gradients. While variations in vehicle speed and incline gradient had no significant effect on N_2O emissions from the diesel vehicle tested, one new gasoline vehicle equipped with a 3-way catalyst demonstrated a reduction in N_2O emissions from 2.6 mg/mi to 0.3 mg/mi with an increase in vehicle speed from 37 mph to 62 mph. This same vehicle produced 1.3 mg/mi of N_2O when operated at 37 mph on a 2% incline gradient, and only 0.6 mg/km of N_2O on a 4% gradient. Over the Japanese '11-step' driving cycle (which includes a cold start), a vehicle with a 1000 km odometer reading produced 26.7 mg/mi of N_2O .

One significant complication to the analysis of N_2O emissions from motor vehicles is that the FTP, the drive cycle used in many N_2O emission tests, overestimates average trip length (and hence underestimates the fraction of total trip mileage in cold-start mode in real driving), but also underestimates average vehicle speed (German, 1995; U.S. EPA, 1995). Therefore, in the real world as compared to the FTP, N_2O emissions will be higher on account of the additional cold starts, but lower on account of the higher speeds. The net effect of these two factors is not clear.

2.5. N_2O emissions and catalyst age

Relatively few studies have investigated the potential effect of catalyst age on N_2O emissions, but most of the available data suggest that N_2O emissions can increase significantly as catalyst age accumulates. Based on a study of eight new or laboratory aged catalysts, De Soete (1993) reports that N_2O emissions from vehicles equipped with catalysts aged to an equivalent of about 15,000 miles of use are on average 3.9 times higher than emissions from vehicles equipped with new catalysts, when tested on the European Extra Urban Driving Cycle (EUDC – a high speed driving cycle with a top speed of 120 km/hr). On the Economic Commission for Europe (ECE) hot-start cycle, average N_2O emissions from the aged catalyst vehicles. On the ECE 15-04 driving cycle, which includes a cold-start, N_2O emissions from the aged catalyst vehicles were 2.1 times higher than those from the new-catalyst vehicles.

Sasaki and Kameoka (1992) found that older vehicles produced much higher N_2O emissions than newer vehicles with similar emission control equipment. While this study was not controlled in such a way as to isolate the effect of catalyst age, the oldest vehicle tested (which had an odometer reading of 52,000 km) produced several times the N_2O emissions of the newest vehicle (with only 1,000 km of use). The exact magnitude of the emissions difference between the two vehicles varied by driving cycle, but averaged across the three Japanese driving cycles studied the older vehicle produced 8.4 times the N_2O emissions of the new vehicle.

A 1989 study by Lindskog (in De Soete, 1993) reports that N_2O emissions from a vehicle with a catalyst aged 15,000 km were 1.3 times (Swedish cold-start driving cycle) and 1.5 times (Swedish hot-start driving cycle) higher than emissions with a new catalyst. Prigent and De Soete (also in De Soete, 1993) report similar findings, with emissions increases of 1.5 times on both the ECE 15-04 (cold start) and EUDC (hot start) cycles, for vehicles using a catalyst bench aged for 150 hours relative to a new catalyst. Also, a recent study of nine 'clean fleet' vans operating on reformulated gasoline in Los Angeles revealed that emissions of N_2O at 15,000 miles were on average 1.9 times higher than emissions at 5,000 miles, and that N_2O emissions at 25,000 miles were on average 2.8 times higher than emissions at 5,000 miles

More recently, Jimenez et al. (1997) conducted a study of actual, on-road N_2O emissions from vehicles in El Segundo, California in November, 1996. Using a remote sensing approach based on an Aerodyne Research Tunable Diode Laser (TILDAS) instrument, Jimenez et al. took a total of 1386 measurements of different vehicles and found a wide variation in N_2O emissions, with a mean of 5.0 ppm and a standard deviation of 24.3 ppm. Including a systematic bias evident in the data and other sources of uncertainty, the authors place the mean rate of emissions at 4.3 to 8.5 ppm. Using an average fuel economy estimate of 17.4 mpg, and the 5.0 ppm figure, Jimenez et al. calculated an overall mean emission rate of 19.3 mg

 N_2O /mile (Jimenez et al., 1997). Although this value is considerably lower than that reported in most other studies, it is important to note that these on-road data are measurements of vehicles with hot catalysts, and that 'cold start' emissions – probably the largest source of N_2O – are therefore not included.

Jimenez et al. also were able to present a breakdown in vehicle N₂O emissions by vehicle vintage. They showed that non-3-way catalyst equipped vehicles, older than model year 1982, produced very little N2O emissions. The oldest vehicles with three-way catalysts, those of vintages from 1982 to 1988, produced the highest level of N₂O emissions, with values as high as 15 ppm. The emissions from newer catalyst vehicles, 1989 and newer, tended to be close to the reported mean value of 5 ppm (Jimenez et al., 1997). Hence, these data show clearly that catalyst-equipped vehicles produce higher N2O emissions than earlier non-catalyst vehicles, and that, for catalyst-equipped vehicles, emissions of N₂O are substantially higher for older (1982-1989) vehicles than for newer (1990-1997) ones. This latter effect could be due to either a model year effect (i.e., older vehicles produce more N₂O than newer vehicles, both when new and when old) or a catalyst aging effect, but there were no major changes to emission control technology from 1982 until 1994, when the EPA's Tier 1 standards became implemented. Therefore, it is more likely that the higher emission levels observed for older vehicles are the result of the catalyst aging effect.

Finally, in a laboratory study of N₂O formation across different types of new and aged catalysts, Odaka et al. (1996) found that N₂O formation characteristics changed when the new catalysts were artificially aged to an equivalent of 30,000 miles. They found that both the type of metal used in the catalyst and the quantity of metal used were significant variables. For Pt/Rh catalysts with high metal contents (1.25 g/L Pt and 0.25 g/L Rh), relatively minor changes were apparent upon aging. The peak level of N₂O formation was constant at about 160 ppmv (at about 573 K), and the profile shifted only slightly upon aging such that formation levels were slightly lower at temperatures below 523 K, slightly higher at 523–573 K, slightly lower at 573–673 K, and somewhat higher at higher temperatures. For Pt/Rh catalysts with lower metals contents of 0.8 g/L Pt and 0.16 g/L Rh, peak N₂O formation increased dramatically with aging, with the peak (at about 573 K) rising from about 50 ppmv to over 150 ppmv in the aged catalyst. In contrast, a Pd catalyst with a content of 3.0 g/L exhibited no change in peak N₂O formation levels with aging, but the peak shifted from occurring at about 473 K in the fresh catalyst to about 623 K in the aged catalyst. Higher formation levels were observed across a wide temperature range of from 573 to 673 K. Finally, a Pd/Rh catalyst with metals contents of 1.0 g/L Pd and 0.2 g/L Rh exhbited both shifts upon aging, with an increase in peak formation of from about 75 ppmv at 523 K, to about 175 ppmv at 623 K (Odaka et al., 1997).

These studies are not sufficient to provide a complete understanding of the effect of catalyst age on N_2O emissions, but they do suggest that N_2O emissions increase with catalyst age.⁵ Vehicle running emissions of N_2O would seem to in-

crease substantially over the life of the vehicle, such that after a vehicle is about eight years old, its N_2O emissions rise to a point that is likely to be three to four times higher than those when new. Based on what has been learned from laboratory studies, this effect can be readily explained with the understanding that peak N_2O formation occurs at higher temperatures with aged catalysts. While the peak quantity of N_2O formed over aged catalysts may or may not be higher at these higher temperatures than the peak for newer catalysts at lower temperatures, actual vehicle emissions are higher for vehicles with aged catalysts because a greater proportion of the driving cycle occurs in the 'window' of relatively high temperature and N_2O formation (De Soete, 1993; Jimenez et al., 1997).

2.6. N_2O Emissions and future emission controls

Electrically heated or close-coupled catalysts, which might be used to meet the new non-methane hydrocarbon (NMHC) tailpipe emission standards, will reduce the amount of time that the catalyst is cold and are therefore likely to reduce N₂O emissions. Also, the possible N₂O formation mechanism, $2NO + CO \rightarrow N_2O + CO_2$, indicates that when CO emissions are reduced, N₂O emissions may be reduced. For these reasons, it is likely that future vehicles will have lower emissions than have the vehicles summarized in Table A-I.

2.7. N_2O Emissions and fuel consumption

The IPCC *Guidelines* (1997) state that in the absence of g/mi emissions data for a particular class of vehicles (e.g., heavy-duty gasoline vehicles with advanced controls), emissions can be estimated by multiplying the kg/mi fuel consumption of the vehicle class in question by a fuel-and-technology specific g-N₂O/kg-fuel factor, derived from data on emissions and fuel consumption for a similar vehicle class (e.g., light-duty gasoline vehicles with advanced controls). The EPA adopts this procedure in its own analysis, justifying it on the grounds that they found that light trucks emit more than do passenger cars (Michaels, 1998).

The IPCC (1997) justifies its recommendation on the grounds that 'emissions and fuel consumption tend to vary in parallel (vehicles and operating modes causing high emission rates tend to result in high fuel consumption, and vice versa)' (p. 1.66). However, we note that while it probably is true that emissions and fuel consumption tend to move in the same direction with respect to *some* vehicle and operating characteristics, there is little reason to believe that this relationship is one of strict proportionality, which is what the IPCC and the EPA assume. The relationship between fuel economy and emissions depends in complex ways on vehicle engine technology, vehicle age, emission control technology, driving conditions, and emission standards. Certainly, for regulated air pollutants such as CO, NMHCs, and NO_x, the relationship is not one of proportionality, mainly because the regulated pollutants are subject to a grams-per-mile standard that is not proportional vehicle fuel economy (DeLuchi et al., 1994; Khazzoom, 1995; Harrington, 1997). However, in the case of unregulated pollutants such as N_2O and CH_4 , which are not subject to such standards, the matter is more complicated. Theory and the scant available data do not provide definitive answers.

The available emissions data do not generally include fuel consumption as a variable, but when we examine emissions versus vehicle size, for a particular type of fuel and emission control technology, we find that emissions of N_2O from light-duty trucks (LDTs) do tend to be slightly higher than those from light-duty autos (LDAs), and that there is likely a positive relationship between fuel consumption and emissions. However, the increasing proportion of light-duty trucks in the U.S. motor vehicle fleet highlights the need to collect additional data on N_2O emissions from these vehicles, and to confirm that emissions are in fact approximately proportional to fuel consumption, given certain fuel specification and catalyst type and age conditions.

2.8. N_2O Emissions and NO_x/N_2O ratios

Table A-1 includes some data on the NO_x/N₂O ratios (in terms of grams per mile) that correspond to the N₂O emissions measurements shown. In theory, there might be expected to be a correlation between NO_x/N₂O ratios and N₂O emission levels, because greater NO_x control tends to increase N₂O emissions. In general, the data in Table A-I show that for gasoline LDVs, higher NO_x/N₂O ratios seem to be correlated with lower N₂O emission levels. However, for other vehicles types, such as diesel vehicles, NO_x/N₂O ratios can be much higher than for even uncontrolled gasoline vehicles, and N₂O emissions are apparently only somewhat lower. Thus, there is weak evidence for a general correlation between high NO_x/N₂O ratios and low N₂O emissions, but no firm conclusions can be drawn from the available information due to incomplete data and the confounding factors of engine type, emission control type, and catalyst age.

2.9. GASOLINE LDV N_2O EMISSIONS SUMMARY

The data presented in Table A-I suggest that N_2O emissions are a function of the type of emission control equipment (e.g., N_2O emissions from cars with 3-way catalysts are uniformly higher than from cars without catalysts), drive cycle, vehicle speed (e.g., N_2O emissions are relatively high from vehicles operated over test cycles that include a cold-start), and catalyst age (e.g., emissions tend to increase as the catalyst ages). Table II summarizes our estimates of N_2O emissions from average-age gasoline LDAs and LDTs, along with the IPCC (1997) and EPA (1999) estimates, while more detailed emissions functions with vehicle age as a variable are presented below.

The data we have analyzed indicate that low-mileage 1980s/early 1990s modelyear (Tier 0) passenger cars with 3-way catalytic converters, or 3-way catalytic converters plus oxidation catalysts, emit 20 to 100 mg/mi of N_2O , with an average of about 50 mg/mi. Low-mileage mid-1990s model-year (Tier 1) cars with

Table II

 N_2O CH₄ EPA EPA IPCC This paper t IPCC This (1997)^a (1997)^{a,c} (1999)^c paper^b (1999)Gasoline LDAs, Tier 1^d 0.024^e 0.27 0.05 0.05^e 0.05 0.05 Gasoline LDAs, no controls 0.03 0.02 0 - 0.020.21-0.23 0.22 Use EPA Gasoline LDTs. Tier 1^d 0.11^{f} 0.058^{f} 0.05-0.06 0.38 0.06 0.06 Gasoline LDTs, no controls Use LDA Use EPA 0.04 0.02 0.21-0.23 0.22 n.e. h Gasoline HDVs. Tier 0g Use EPA 0.98 0.28 0.11-0.13 0.12 Gasoline HDVs, no controls 0.09 0.04 0.05-0.1^h 0.40-0.47 0.43 Use EPA 0.01-0.02 0.02ⁱ 0.01-0.06 0.02 Diesel LDAs 0.02 Use EPA Diesel LDTs 0.04-0.10 0.03ⁱ Use LDA 0.02 0.02 Use EPA Diesel HDVs 0.04-0.05 0.02-0.09 0.06-0.10 0.06-0.10^j 0.05 Use EPA Methanol LDVs, advanced 1.0 · GLDV 0.03 0.5 · GLDV n.e. n.e. n.e. Methanol HDVs, advanced n.e. n.e. 1.0 · GHDV 0.16 n.e. 1.0 · DHDV 0.75 · GLDV $20 \cdot GLDV^k$ CNG LDVs_advanced n e n e 11 n e CNG LDVs, no controls n.e. n.e. n.e. 5.6 n.e. $10 \cdot \text{GLDV}$ CNG HDVs, advanced 4.8-6.41 30 · DHDV 0.75 · GHDV n.e. n.e. n.e. CNG HDVs, no controls 16 n.e. n.e. n.e. n.e. n.e. LPG LDVs, advanced $1.0 \cdot \text{GLDV}$ 0.05 $1.0 \cdot \text{GLDV}$ n.e. n.e. n.e. LPG LDVs, no controls n.e. 1.0 · GLDV 0.29 1.0 · GLDV n.e. n.e. LPG HDVs, advanced $1.0 \cdot \text{GHDV}$ 1.0 · DHDV n.e. n.e. 0.24^m n.e. 0.64^m LPG HDVs, no controls n.e. n.e. n.e. n.e. n.e. Ethanol LDVs n.e. n.e. $1.0 \cdot \text{GLDV}$ n.e. n.e. 1.5 · GLDV Ethanol HDVs 3.0 · DHDV n.e. n.e. n.e. n.e. n.e. Hydrogen LDVs n.e. n.e. n.e. n.e. n.e. 0.0 Hydrogen HDVs n.e. 0.0 n.e. n.e. n.e. n.e.

Summary of IPCC, EPA, and author N2O and CH4 emission factors for U.S. motor vehicles (g/mi)

Notes: LDA = light-duty passenger auto; LDT = light-duty truck; LDV = light-duty vehicle (passenger auto or truck) HDV = heavy-duty vehicle; GLDV = gasoline light-duty vehicle; GHDV = gasoline heavy-duty vehicle; DHDV = diesel heavy-duty vehicle; CNG = compressed natural gas; LPG = liquefied petroleum gases; n.e. = not estimated. Note that for alternative-fuel vehicles, we do not distinguish LDT from LDA emissions factors, and instead use a generic LDV emission factor.

^a The IPCC reports emission factors for Spring, Fall, Summer, Winter, and a year-round average. We show their year-round average factors

^b Our estimates are based on our analysis of the data complied in Tables A-1 and A-2, as discussed in the text.

^c Both the IPCC and the EPA get their CH₄ emission factors from the EPA's MOBILE5 model; hence the agreement between

the two sources. d The EPA (Michaels, 1998) defines 'Tier 1'controls to be 'advanced' 3-way catalysts, as distinguished from 'early' 3-way catalysts, which are identified as Tier-0 controls. The IPCC (1997) distinguishes between 'early 3-way catalyst' and '3-way catalyst control', for gasoline LDAs and LDTs. We assume that the IPCC '3-way catalyst control' corresponds to the EPA's 'Tier 1', and that the IPCC 'early 3-way catalyst' corresponds to the EPA's 'Tier 0'

^e From Equation (5) (N₂O), with MI = 70,000 mile (about the midlife of a light-duty passenger auto), or Equation (10) (CH₄). $^{\rm f}$ From Equation (6) (N₂O), with MI = 75,000 mile (about the midlife of a light-duty truck), or Equation (11) (CH₄).

g In the EPA inventory, 'Tier 0' is the most stringent control category for gasoline HDVs. In the IPCC inventory, '3-way catalyst control' is the most stringent control category for gasoline HDVs.

^h The two gasoline HDVs reported in Table A-1 are of the 1979 model year, which presumably was more like an uncontrolled vehicle than a Tier-0 vehicle

¹ For diesel vehicles, the EPA adopts the IPCC's recommended emission factors for European vehicles, and not the recommendations for U.S. diesels (which are shown in this table), on the grounds that Europeans have 'greater experience' with diesels (Michaels, 1998). However, as discussed in the text here, the IPCC (1997) apparently has no data on N₂O emissions from European diesel HDVs or European diesel LDTs, and very limited data (probably the same data summarized in Table A-I here) on emissions from European diesel LDAs (see p. 1.79 of IPCC). Moreover, the IPCC does have data on N2O emissions from U.S. diesel HDVs - the same data summarized in Table A-I here - and uses those data to estimate the U.S. diesel emission factors shown here. Our own approach, as discussed in the text, is to use all of the available data.

^j The EPA (1999) uses 0.06 g/mi for 'advanced' vehicles, 0.08 g/mi for 'moderately' controlled vehicles, and 0.10 g/mi for 'uncontrolled' vehicles. These estimates appear to be lower than the estimates from MOBILE4 and MOBILE5 (see Table A-II). k But see the text and Table A-2 for details.

¹ The lower figure is for an advanced stoichiometric engine (to be compared with gasoline, according to the IPCC); the higher figure is for an advanced lean-burn engine (to be compared with diesel, according to the IPCC). ^m The IPCC factors are for a stoichiometric engine, and according to the IPCC are to be 'compared with gasoline' (p. 1.87).

Figure 1. Gasoline light-duty passenger automobile N₂O emission data and trends. Note: Tier 0 vehicles are assumed to be those with vintages prior to 1995, while Tier 1 vehicles are model year 1995 and later, based on the EPA estimate that 80% of model year 1995 vehicles were equipped with Tier 1 emission controls (Michaels, 1998).

advanced 3-way catalytic converters also emit about 50 mg/mi of N₂O. Passenger cars with aged catalysts produce somewhat higher emissions, and the available data show a somewhat greater increase in emissions with catalyst age for Tier 0 vehicles than for Tier 1 vehicles.⁶ Figure 1 presents the N₂O emissions data for Tier 0 and Tier 1 gasoline light-duty passenger automobiles with different odometer readings, along with regression lines fitted to the test data (excluding the Ballantyne et al. 'high sulfur fuel' data, and using the average of the EPA emissions estimates for vehicle operation with and without the air conditioner on). Also shown is the U.S. emission factor suggested by the IPCC (1997) and used by the EPA in its March 1998 draft emissions inventory (U.S. EPA, 1998), and the revised Tier 0 and Tier 1 emission factors suggested by the Office of Mobile Sources (OMS) of the EPA (Michaels, 1998) and used in the latest EPA (1999) and EIA (1998a) emissions inventories. Based on the regression analyses shown in Figure 1, we specify an N₂O emission-factor model for Tier 0 and Tier 1 gasoline LDAs as:

$$EM_{T0/T1} = ZM_{T0/T1} + DA \cdot \frac{MI}{1000},$$
(5)

where $\text{EM}_{\text{T0/T1}} = N_2\text{O}$ emissions from Tier 0 or Tier 1 gasoline LDAs (g/mi); $\text{ZM}_{\text{T0/T1}} =$ zero-mile N₂O emissions (0.0299 g/mi for Tier 0 vehicles and 0.0422 g/mi for Tier 1 vehicles); DA = the deterioration rate in emissions with vehicle mile (0.00136 g/mi per 1000 miles for Tier 0 vehicles and 0.00016 g/mi per 1000 miles for Tier 1 vehicles); MI = total mileage on the vehicle (miles).

Figure 1 shows that the revised EPA/OMS emission factor agrees better with the available data than does the IPCC emission factor. However, on our Tier 0 trend line

Figure 2. Gasoline light-duty truck N_2O emission data and trends. Note: Tier 0 vehicles are assumed to be those with vintages prior to 1995, while Tier 1 vehicles are model year 1995 and later, based on the EPA estimate that 80% of model year 1995 vehicles were equipped with Tier 1 emission controls (Michaels, 1998).

the emission rate at the mid-life of a vehicle (around 70,000 miles) lies above the revised EPA/OMS Tier 0 emission rate. This suggests that the EPA/OMS factor for Tier 0 vehicles may be conservative.

Similarly, Figure 2 shows emission data, regression lines, and EPA emission factors for gasoline LDTs. Low-mileage Tier 0 and Tier 1 LDTs generally emit about 20 to 140 mg/mi of N₂O, although one Tier 0 vehicle tested emitted about 250 mg/mi with a mileage of only 5,000 miles. The data suggest that the deterioration rate for Tier 0 vehicles may be substantially higher than for Tier 1 vehicles, but again more data for high-mileage vehicles are needed to further support this conclusion. Based on the regression analyses shown in the figure, we specify an N₂O emission-factor model for Tier 0 and Tier 1 gasoline LDTs as:

$$EM_{T0/T1} = ZM_{T0/T1} + DA \cdot \frac{MI}{1000}, \qquad (6)$$

where $\text{EM}_{\text{T0/T1}} = N_2\text{O}$ emissions from Tier 0 or Tier 1 gasoline LDTs (g/mi); $\text{ZM}_{\text{T0/T1}} = \text{zero-mile } N_2\text{O}$ emissions (0.0843 g/mi for Tier 0 vehicles and 0.0725 g/mi for Tier 1 vehicles); DA = the deterioration rate in emissions with vehicle mile (0.0028 g/mi per 1000 miles for Tier 0 vehicles and 0.00054 g/mi per 1000 miles for Tier 1 vehicles); MI = total mileage on the vehicle (miles).

Again, the U.S. emission factor suggested in the IPCC *Guidelines* appears to be too high. On the other hand, the revised emission factors suggested by EPA (Michaels, 1998) might be too low; for the most part, they lie below the trend lines

490

that we plot from the available data (Figure 2). However, our Tier-0 trend line is influenced strongly by the very high emissions of one of the three vehicles tested, and the upward slope of our Tier-1 trend line might not be real. Although we do use our trend lines as the basis of our own estimates, we emphasize that there is a good deal of uncertainty here.

2.10. N_2O emissions from Gasoline Hdvs, and diesel Ldvs and Hdvs

There are few data on N_2O emissions from diesel LDVs and heavy-duty vehicles (HDVs), and very few data on N_2O emissions from gasoline HDVs. And there appear to be no data on N_2O emissions from diesel or gasoline HDVs with advanced emission control systems. Table II summarizes the IPCC (1997) and EPA (1999) estimates for these vehicle types.

The IPCC (1997) estimates separate N_2O emission factors for U.S. and European vehicles. They use the Dietzmann et al. (1980) data to estimate N_2O factors for diesel HDVs in the U.S., and unspecified data to estimate N_2O emission factors for diesel LDVs in Europe. For diesel HDVs in Europe, diesel LDVs in the U.S., and gasoline HDVs in Europe and the U.S., the IPCC (1997) apparently estimates N_2O emissions by multiplying the kg/mi fuel consumption of each vehicle class by a fuel-specific emission factor, in g-N₂O/kg-fuel, derived from emissions and fuel consumption data available for similar vehicle classes. Neither the IPCC (1997) nor the EPA (Michaels, 1998) report the Dietzmann et al. (1981) data for gasoline HDVs.

The IPCC (1997) – and by following them, the EPA (Michaels, 1998) – resort to extrapolating by fuel consumption in part because they apparently do not have data for gasoline HDVs, or report the details of the data for diesel LDVs. We prefer to examine all of the available data as a whole. Upon first inspection, the N₂O emissions from diesel HDVs, diesel LDVs, and gasoline HDVs appear similar. However, the N₂O emissions from the two low-mileage diesel HDVs were less than the emissions from the high-mileage diesel HDVs, and less than the emissions from the low-mileage gasoline HDVs. This might suggest that emissions increase with HDV mileage, and that for a given vehicle vintage (the gasoline and diesel vehicles in the Dietzmann et al. tests were of the same vintage) and age, diesel HDVs emit less than do gasoline HDVs.

However, it is not clear why emissions should increase with age for vehicles without catalytic converters, or what properties of gasoline engines might make them emit more N_2O than do diesel engines. Furthermore, the diesel LDVs, which presumably were uncontrolled, did not emit less N_2O than did uncontrolled gasoline LDVs. Finally, there apparently are no N_2O emissions data at all for advanced HDVs, using any fuel.

Clearly, it is difficult to draw any firm conclusions from the available data. We think it most reasonable to assume that diesel engines emit roughly the same amount of N_2O as do gasoline engines of a similar size and emission control. This

indicates a factor of 10–50 mg/mi for diesel LDAs, and 40–60 mg/mi for diesel HDVs. We are unable to estimate a factor for gasoline HDVs with 3-way catalysts.

2.11. N₂O EMISSIONS FROM ALTERNATIVE-FUEL VEHICLES

Our estimates of the relative emissions of N_2O from various types of AFVs are shown in Table II, and are discussed below. The IPCC and the EPA do not estimate N_2O emissions from AFVs.

Based on the preceding analysis, one would expect that N_2O emissions from AFVs would be related to the operating temperature and composition of the catalytic-converter emission-control system. Virtually all AFVs built or converted to date use stock gasoline-vehicle catalytic control systems (or systems very similar to gasoline systems), and emit about as much N_2O as do gasoline vehicles. Advanced catalytic-control systems made specifically for AFVs may affect N_2O emissions. Such catalysts are being developed for methanol and compressed natural gas (CNG) vehicles. However, there are so few advanced, optimized AFVs, and even fewer optimized emission control systems, that at present it is impossible to estimate N_2O emissions from fully optimized AFVs.

Tests by Ford Motor Company (1988a) on two flexible-fuel Escorts and two flexible-fuel Crown Victorias (flexible-fuel vehicles can use any mixture of methanol and gasoline) show no striking relationship between N₂O emissions and the methanol content of the fuel. The data do suggest that N₂O emissions increase with the age of the catalyst, but there are so few data that one cannot draw a firm conclusion. In general, the emission rates from the FFVs spanned the range of emissions typically measured from gasoline LDVs. The Escorts emitted over 100 mg/mi, and the Crown Victorias emitted 10–15 mg/mi. Because of this, and because N₂O emissions were not affected by the amount of methanol or gasoline fuel, it is likely that methanol vehicles – both flexible-fuel and dedicated – emit about the same amount of N₂O as gasoline LDVs with similar emission controls.

The few data available also do not provide a basis for assuming that ethanol and liquefied petroleum gas (LPG) vehicles emit appreciably different levels of N_2O than do gasoline vehicles. However, some CNG vehicles appear to emit less, perhaps because their low levels of engine-out CO lead to lower levels of N_2O formation (see Equation (3)). A recent study of 36 gasoline, LPG, methanol, and CNG vans produced by Chevrolet, Dodge, and Ford demonstrates that emissions of N_2O from all four vehicle types are comparable (Battelle, 1995) with the exception that the Dodge CNG vans, which were among the first CNG vehicles produced with catalyst systems tailored for CNG exhaust, emitted significantly less N_2O than the other vehicles. These vehicles produced only 9 mg/mi of N_2O on average when new, but emissions clearly increased with catalyst age to the point where, at 15,000 miles, an average emission rate of 39 mg/mi of N_2O was measured. Based on these data, a reasonable approximation would be to assume that the N_2O emission factor for advanced CNG vehicles is about 75% of the factor for Tier 1 gasoline vehicles. More emission tests would be useful, however, to measure N_2O emissions from CNG passenger cars, to assess the relative deterioration rates for CNG vehicles and gasoline vehicles, and to determine how representative are the Battelle (1995) data.

There do not appear to be any data at present on emissions of N_2O from alternative-fuel HDVs. In the absence of data, it is perhaps reasonable to assume that the ratio of N_2O emissions from advanced alternative-fuel HDVs to N_2O emissions from advanced gasoline HDVs is the same as the ratio for advanced LDVs.

3. Methane (CH₄) Emissions from Motor Vehicles

 CH_4 is emitted from gasoline, diesel, methanol, ethanol, LPG, and natural gas internal-combustion-engine vehicles. These emissions occur due to incomplete fuel combustion, which produces CH_4 along with other unburned hydrocarbons. Emissions of CH_4 are a function of the type of fuel used, the design and tuning of the engine, the type of emission control system, the age of the vehicle, and other factors. Table A-II is a compilation of reported measurements of CH_4 emissions from petroleum-fueled vehicles and AFVs, along with the relevant key attributes of the vehicles.

It is important to note that although methane emissions *per se* are not regulated in the U.S., the systems used to control emissions of NMHCs and total hydrocarbons (THCs) do to some extent control CH_4 emissions. However, since CH_4 is difficult to oxidize catalytically, control systems do not have the same effectiveness in controlling CH_4 emissions as they do in controlling NMHCs. Thus, whereas controlled NMHC emissions can be an order of magnitude less than uncontrolled emissions, CH_4 emissions from vehicles with HC controls might be about 3 times less than CH_4 emissions from vehicles with no controls. The EPA's study for its MOBILE3 model found that vehicles without a catalytic converter emit 0.3 g/mi CH_4 , compared with 0.1 g/mi for vehicles equipped with a catalytic converter. Thus, methane emissions are a larger fraction of total HC emissions from new, tightly controlled cars than from old, high-emitting cars.

The EPA's most recent model of emission factors for mobile sources, called 'MOBILE5', reports THC and NMHC emissions for gasoline and diesel vehicles.⁷ The difference between the two is the CH₄ emission rate. Because the THC and NMHC emission factors in MOBILE are derived from tests of 1000s of gasoline light-duty vehicles (Guensler et al., 1991) the EPA/MOBILE5 estimates of CH₄ emissions from gasoline LDAs and LDTs, while certainly not perfect (we discuss this briefly below), have historically been the best available. However, it is unclear to what extent tests of post-1995 vintage (Tier 1) LDVs have been included in the database used in the MOBILE estimates. Based on recent tests of a few vehicle types, these Tier 1 vehicles appear to emit substantially less CH₄ than Tier 0 vehi-

cles. For this reason, we use the available data to estimate our own CH_4 emission rates for Tier 1 LDAs and LDTs, as well as Tier 0 vehicles (see Section 3.1). Also, as discussed below, the MOBILE5 emissions data for HDVs apparently are much poorer than the data for LDVs. However, in the absence of significant data with which to estimate new emission rates, we adopt the MOBILE5 estimates of CH_4 emissions from gasoline and diesel HDVs.

3.1. CH₄ EMISSIONS FROM GASOLINE LDVS

The EPA MOBILE estimates, and the other available test data, indicate that gasoline LDVs with 3-way catalytic converters emit between 0.02 and 0.2 g/mi CH₄, with values for recent model-year cars centering around 0.08 to 0.10 g/mi. The emissions database used by the EPA to develop an early version of the emissions model, MOBILE3, indicates that gasoline LDVs emit 0.1 g/mi at low-altitude (Chun, 1988; U.S. EPA, 1985). MOBILE5, the most recent version of the EPA mobile-source emission-factor model, estimates that the LDV fleet will emit 0.12 g/mi in the year 1990, 0.06 g/mi in the year 2000, and 0.04 g/mi in the year 2020. The model projects a decline in emissions because beginning in 1994 vehicles had to meet the lower NMHC emission standards called for in the Clean Air Act Amendments of 1990 (U.S. EPA, 1991) and the technology used to control NMHC emissions to some extent also controls CH₄ emissions.

One would expect CH_4 emissions to increase somewhat as the engine and the emission-control system age and deteriorate. The data do suggest that for most fuels – nonpetroleum fuels as well as petroleum fuels – CH_4 emissions increase with the age of the catalyst. On the other hand, the EPA's (1985) analysis for MOBILE3 indicated that CH_4 emissions from pre-1985 gasoline vehicles did not deteriorate with age. The few tests that couple modern vehicles and fuels (i.e., 1992 vans using reformulated gasoline) show emission levels of about 0.05 g/mi when new, rising to about 0.15 g/mi with significant catalyst age. Older three-way catalyst equipped vehicles exhibit somewhat higher rates, ranging from perhaps 0.1 g/mi when new to 0.3 g/mi or more when older. We note that there are virtually no data on CH_4 emissions from very old vehicles.

CH₄ emissions, like NMHC emissions, appear to be higher at lower ambient temperatures (Stump et al., 1989, 1990). This is to be expected because before the engine is warmed up the temperature of the fuel going into the engine is close to the ambient temperature, and at lower temperatures a liquid fuel does not vaporize as completely, and hence does not burn as completely. If CH₄ emissions are related to temperature, such that lower combustion and exhaust temperatures cause them to increase, then one would expect that CH₄ emissions also would be related to the driving cycle, which can affect engine and exhaust temperatures. This expectation is borne out by recent measurements that show that g/mi CH₄ emissions are higher during cold-start mode (which is measured in 'bag 1' of the Federal Test Procedure, or FTP) than during other driving modes (measured in 'bag 2' and 'bag 3' of the

FTP), and higher over the whole FTP drive cycle than over a high-speed, highpower cycle called the REP05 (Auto/Oil, 1996). Because of deficiencies in the MOBILE emissions model, discussed next, these two 'drive-cycle' effects – higher emissions in FTP bag-1 than in other bags, and higher emissions over the FTP than the REP05 cycle – suggest that MOBILE's estimates of CH_4 emissions might be in error.

One deficiency in the MOBILE model is that the model overestimates average trip lengths and hence underestimates the average fraction of time spent in the cold-start mode, when emissions are highest (U.S. EPA, 1995; German, 1995). Because of this, MOBILE tends to underestimate drive-cycle CH_4 emissions. But the MOBILE model also in effect assumes that vehicles drive slower and accelerate less rapidly than they actually do (Ross et al., 1995). Because of this, MOBILE tends to overestimate CH_4 emissions, which as noted above are lower in high-speed, high-power driving. Thus, these two effects tend to offset one another, and the net effect is unclear.

It is worth noting that fuel economy and emissions data indicate that CH_4 emissions are not proportional to fuel consumption. This is not surprising, because as discussed above tailpipe emissions in general are not proportional to fuel consumption.

On the basis of the data we have analyzed, we estimate CH_4 emissions for Tier 0 and Tier 1 gasoline LDAs. As with N₂O emissions from gasoline LDVs, CH_4 emissions also seem to increase somewhat as a function of catalyst age. However, there are few data for high-mileage LDVs, particularly for Tier 1 LDAs and LDTs, and this makes the estimation of deterioration rates difficult. When regression analyses are performed on the available data, emission trendlines slope upward, but with very low associated coefficient of determination (r-squared) values. Given the general lack of data on CH_4 emissions from high-mileage vehicles, we are reluctant to base emission factors on such regression analysis. Instead, we prefer to calculate average emission rates, as well as to estimate approximate emission trends with increasing catalyst age for Tier 1 vehicles. Based on the data available, average CH_4 emissions from Tier 0 LDAs are approximately 0.043 g/mi, and average CH_4 emissions from Tier 1 LDAs are approximately 0.019 g/mi.

These average emission rates compare to IPCC and EPA values of 0.05 g/mi for Tier 1 LDAs (see Table II), meaning that they indicate somewhat lower emissions than the EPA estimates. We note that while the average emissions estimate for Tier 0 LDAs is based on emissions tests from a range of different vehicle types, the estimate for Tier 1 vehicles is based on two sets of recent data that encompass tests on only two vehicle types: the Crown Victoria and the Mercury Marquis. Emissions tests on a broader array of Tier 1 vehicle types are needed to determine whether Tier 1 LDA CH₄ emissions really are consistently as low as about 0.02 g/mi, as shown in some recent tests (NREL, 1998; Kelly et al. 1996a), or if at least some vehicle types produce levels of emissions closer to the 0.05 g/mi estimated by the EPA.

Given the likely increase in emissions with catalyst age, these average emission rates may therefore underestimate emissions from high-mileage vehicles. Thus, we also estimate an approximate emissions function for Tier 1 LDAs, as our 'best guess' estimate. Once again, additional emissions data will be necessary to better substantiate an emissions function for CH_4 emissions from Tier 1 LDAs. The emissions function for CH_4 emissions from Tier 1 LDAs.

$$EM_{T1} = ZM_{T1} + DA \cdot \frac{MI}{1000},$$
 (10)

where $\text{EM}_{T1} = \text{CH}_4$ emissions from Tier 1 gasoline LDAs (g/mi); $\text{ZM}_{T1} =$ zeromile CH₄ emissions (0.01 g/mi); DA = the deterioration rate in emissions with vehicle mile (0.0002 g/mi per 1000 miles; MI = total mileage on the vehicle (miles).

Similarly, we estimate average CH_4 emissions for Tier 0 and Tier 1 gasoline LDTs. The average CH_4 emissions from Tier 0 LDTs are approximately 0.087 g/mi, and average CH_4 emissions from Tier 1 LDTs are approximately 0.049 g/mi. These emission values compare with the EPA estimated value of 0.06 g/mi for Tier 1 LDTs (see Table II). Once again, these emissions estimates may somewhat underestimate emissions from high-mileage LDTs due to the possible increase in emissions with catalyst age. Thus, we also estimate an approximate emissions function for Tier 1 LDTs, as our 'best guess' estimate. This function is as follows:

$$EM_{T1} = ZM_{T1} + DA \cdot \frac{MI}{1000},$$
 (11)

where $\text{EM}_{\text{T1}} = \text{CH}_4$ emissions from Tier 1 gasoline LDTs (g/mi); $\text{ZM}_{\text{T1}} =$ zeromile CH₄ emissions (0.03 g/mi); DA = the deterioration rate in emissions with vehicle mile (0.0004 g/mi per 1000 miles; MI = total mileage on the vehicle (miles).

Figure 3 plots representative CH_4 emission data for LDV passenger cars and trucks, and shows the average emission values for Tier 0 vehicles and 'best guess' emissions functions for Tier 1 vehicles, along with the EPA/IPCC recommended values.

3.2. CH₄ EMISSIONS FROM NATURAL-GAS LDVS

Because CH_4 is the primary component of natural gas, one would expect that vehicles using natural gas would emit considerably more CH_4 than do gasoline LDVs. The available data confirm this, showing that CH_4 emissions from naturalgas vehicles (NGVs) range from 0.6 to 4 g/mi for dual-fuel vehicles (which carry and use two fuels, gasoline and natural gas), and between 0.13 and 3 g/mi for dedicated vehicles (which carry and use only natural gas).

Most of the NGVs for which emission data have been reported are retrofitted or rebuilt gasoline vehicles. Only some of the NGVs (three 1992 Dodge 5.2 liter V8

Figure 3. Gasoline light-duty passenger automobile and truck CH₄ emission data and estimated emission factors.

Note: Tier 0 vehicles are assumed to be those with vintages prior to 1995, while Tier 1 vehicles are model year 1995 and later, based on the EPA estimate that 80% of model year 1995 vehicles were equipped with Tier 1 emission controls (Michaels, 1998).

vans, eight 1996 Ford Crown Victorias, a 1995 Dodge Ram van, and a 1994 GMC Pickup) were completely designed and built for maximum performance and lowest emissions on natural gas (GRI, 1998; Battelle, 1995). The much lower emissions of these optimized vehicles, relative to older NGVs and similar model but non-optimized NGV vehicles, suggest that CH₄ emissions from future, advanced NGVs will likely be under 0.5 g/mi for new vehicles, and perhaps around 1.0 g/mi for vehicles with some catalyst age. The need to meet relatively tight NMHC standards, such as the 'ultra-low-emission-vehicle' (ULEV) standard promulgated by the California Air Resources Board (*California Code of Regulations*, Title 13, Section 1960.1) also may reduce CH₄ emissions somewhat, although the need to meet tight NO_x standards might require a fuel-rich air/fuel mixture (to allow the reduction catalyst to reduce NO_x emissions) and this would tend to increase emissions of unburned fuel.

Thus, the cleanest NGVs tested to date have exceptionally low emissions. CH_4 emissions from the 1992 Dodge vans averaged 0.44 g/mi averaged over three vehicles, and as low as 0.28 g/mi in one test (Battelle, 1995). The 1995 Dodge van and 1994 GMC pickup had similar emission levels, in the 0.4 to 0.5 g/mi range. The relatively new 1996 Ford Crown Victoria had even lower emissions of 0.134 g/mi when tested over the FTP-75 test procedure, but seven other 1996 Crown Victorias,

Tal	ble	Ш
	~	

CH ₄ content of natural gas	86%	90%	94%	97%
CH ₄ emissions from vehicles in grams per mile (REP05 cycle/FTP cycle)	0.47/0.91	0.50/0.93	0.48/0.96	0.49/0.92

with an average of about 60,000 miles of use, had substantially higher emissions, averaging 0.595 g/mi (NREL, 1998; GRI, 1998).

 CH_4 emissions from NGVs, like CH_4 emissions from gasoline vehicles, increase with the age of the catalyst. This is best shown by the Battelle (1995) data from tests of nine 1992 CNG vans from three manufacturers. This is one of the few controlled studies with repeated tests of the same vehicles at different mileage intervals, and the data collected show a consistent increase in emissions from 5,000 to 15,000 miles and from 15,000 to 25,000 miles. The increase in emissions with catalyst age is also apparent from test data for new and used Ford Crown Victoria NGVs, as discussed above. Unfortunately, no data are available yet regarding emissions at very high mileage.

Whereas ambient temperature does influence CH_4 emissions from gasoline LDVs, it does not strongly influence CH_4 emissions from NGVs (Gabele et al., 1990). This is mainly because CH_4 is a gas at all ambient temperatures and hence does not have to be vaporized, a temperature-dependent process. Nevertheless, the recent tests by the Auto/Oil Program (1996) do show that CH_4 emissions from NGVs depend on the drive cycle, in the same way that CH_4 emissions from gasoline vehicles do: CH_4 emissions are somewhat higher in 'bag 1' of the FTP than in the other bags, and considerably higher over the whole FTP cycle than over the high-speed, high-power REP05 cycle (Table A-II).

One might expect that CH_4 emissions from NGVs would be related to the CH_4 content of the natural gas. However, tests by the Auto/Oil Program (1996) suggest that there is no strong relationship between CH_4 content and CH_4 emissions (Table III).

With regard to the potential for abating CH_4 emissions from NGVs with exhaust catalysts, palladium/alumina catalysts would appear to be the most active. However, traces of sulfur in the exhaust of even 1 ppm can severely reduce the oxidation activity for all alkanes, and especially for CH_4 (GRI, 1997a).

In summary, the available data, and considerations discussed above, suggest that CH_4 emissions from NGVs, like CH_4 emissions from gasoline vehicles, decrease with model year (later models emit less) and increase with vehicle mileage, and generally are about an order of magnitude higher than CH_4 emissions from gasoline vehicles of similar technology and age. The data show that CH_4 emissions

from NGV passenger cars are about 4 to 10 times the CH_4 emissions from Tier 0 gasoline passenger cars, and perhaps 5 to 40 times the CH_4 emissions from Tier 1 gasoline passenger cars. Based on the average emissions of Tier 1 gasoline and CNG LDAs, it is reasonable to assume that CH_4 emissions from CNG LDAs are about 20 times the emissions of Tier 1 gasoline LDAs. CH_4 emissions from NGV LDTs are about 5–10 times the emissions from comparable gasoline LDTs. Emissions from uncontrolled NGVs appear to be about 10 times emissions from uncontrolled gasoline vehicles.

3.3. CH₄ EMISSIONS FROM METHANOL LDVS

Methanol LDVs vehicles definitely emit less CH₄ than do comparable gasoline vehicles. Also, CH₄ emissions from 'flexible-fuel vehicles' (FFVs), which can use any mixture of gasoline and methanol, tend to decrease when the gasoline content of the fuel mixture is decreased (CARB, 1991; Gabele, 1990; Ford Motor Company, 1988a; Williams et al., 1990). Furthermore, the upper end of reported CH_4 emissions from methanol LDVs is not as high as the upper end for gasoline LDVs. Taken together, the data suggest that dedicated M100 vehicles emit about half as much CH₄ as dedicated gasoline vehicles, and M85 vehicles (which use a mixture of 85% methanol and 15% gasoline) about two-thirds as much. Data plots of emissions from methanol dedicated and dual fuel LDVs as a function of catalyst age show slowly rising emissions with increased age, but with very few data points from older vehicles. Based on these data, it is reasonable to assume that CH₄ emissions from gasoline/methanol mixtures are equal to the M100 emission rate (which appears to be about 50% of the gasoline emission rate) multiplied by the methanol fraction, plus the gasoline emission rate multiplied by the gasoline fraction of the mixture. The IPCC (1997) estimate in Table II is consistent with this assumption.

3.4. CH₄ EMISSIONS FROM ETHANOL LDVS

There have been only a handful of recent emission tests of late-model ethanol vehicles. The California Air Resources Board (CARB) (1991) has tested one of its Crown Victoria FFVs (which are designed to run on any mixture of alcohol and gasoline, but are optimized for *methanol* and gasoline) on 85% and 95% ethanol. The FFV emitted a relatively large amount of CH₄ when it was run on ethanol – about 2–3 times more CH₄ on E85 than on M85, and about 30% more than on indolene. However, as noted above, the vehicle was not designed to burn ethanol, and CARB is not confident of the results.

Kelly et al. (1996b) report on FTP tests of 21 1992/1993 Chevrolet Lumina variable-fuel ethanol vehicles. As in the CARB results, CH_4 emissions increased with ethanol content, such that CH_4 emissions with 50% ethanol were 37% higher than CH_4 emissions on pure RFG, and that CH_4 emissions with 85% ethanol were 67% higher than with RFG and 24% higher than with 50% ethanol. The CH_4

emission rate when operating on pure RFG was similar to the emission rate from a standard, single-fuel Lumina, of about 0.04 g/mile of CH_4 . These results are significant because they support the CARB test of a single vehicle, and show that FFVs running on ethanol have very different CH_4 emission characteristics than FFVs running on methanol. The results show that CH_4 emissions tend to increase with ethanol content, which is the reverse of what occurs with methanol.

Baudino et al. (1993) also tested Luminas optimized for ethanol fuel, and obtained similar results. On indolene, the vehicles emitted 0.033 g/mi CH_4 and on E85, the vehicles emitted 0.052 g/mi. Thus, the few available data are consistent, and suggest that ethanol vehicles emit more CH_4 than do comparable gasoline vehicles.

Based on these data, we assume that CH_4 emissions from gasoline/ethanol mixtures are equal to the E100 emission rate (which appears to be about 150% of the gasoline emission rate) multiplied by the ethanol fraction, plus the gasoline emission rate multiplied by the gasoline fraction of the mixture.

3.5. CH₄ EMISSIONS FROM LIQUEFIED PETROLEUM GAS (LPG) LDVS

The relatively few data available indicate that LPG vehicles emit about as much CH_4 as do gasoline vehicles. This is not entirely unexpected, because the species profile of HC emissions from any vehicle tends to reflect the HC composition of the fuel.⁸ LPG is mostly propane (C₃H₈), which is similar in many respects to the main components of gasoline (e.g., octane, C_8H_{18}). Although LPG, like natural gas, is a gaseous fuel, it does not contain CH₄, and hence would not be expected to produce as much CH₄ as does natural gas (which typically is at least 90% CH₄). Similarly, LPG is not an alcohol and does not have the properties (whatever they may be) responsible for the relatively low CH₄ emissions of methanol vehicles or the relatively high CH₄ emissions of ethanol vehicles. Thus, it is probably reasonable to assume that most LPG vehicles emit as much methane as do comparable gasoline vehicles. The IPCC (1997) CH₄ emission factor for LPG LDVs, shown in Table II, is consistent with this assumption.

3.6. CH₄ EMISSIONS FROM HYDROGEN LDVS

Theoretically, hydrogen vehicles could emit trace amounts of CH_4 from the combustion of lubricating oil. However, CARB (1989) found no CH_4 in the oil-related HCs from a hydrogen truck, even though the vehicle burned an unexpectedly large amount of oil. Therefore, one probably can assume that hydrogen vehicles do not emit any CH_4 .

3.7. CH₄ EMISSIONS FROM HEAVY-DUTY VEHICLES (HDVS)

The results of several emission tests of gasoline and diesel-fueled HDVs show that, in comparison with the CH₄ emissions estimated by MOBILE5, the MOBILE5

data indicate higher CH₄ emissions from diesel HDVs, and lower CH₄ emissions from gasoline HDVs. According to Guensler et al. (1991) the heavy-duty emission factors in EPA's MOBILE model are generally based on tests of 9 in-use medium heavy-duty diesel engines, 13 in-use heavy-heavy-duty diesel engines, and 18 heavy-duty gasoline engines, in 1983 and 1984. However, we do not know whether the EPA actually measured CH₄ emissions from any or all of these engines; it is possible that they applied assumed CH₄ fractions to measured total hydrocarbon emissions. Beyond that, Guensler et al. (1991) point out various deficiencies in the EPA's 1983/1984 testing program. Finally, it is not clear how the EPA (1999) derived estimates of CH₄ emissions for advanced heavy-duty vehicles (Table II), given that the available test data pertain to engines of a relatively old vintage.

These potential deficiencies highlight the need for additional test data on CH_4 emissions from HDVs. In the meantime, we tentatively favor the EPA/MOBILE5 estimates over analysis based on the few other test data that are available.

Natural-gas HDVs appear to emit significantly more CH_4 than do diesel HDVs. In order to meet the stringent 1994 NO_x emission standard for HDVs, natural-gas HDVs either will use lean-burn engines, or three-way catalytic converters. According to the few tests conducted so far (Jones et al., 1988; Alson et al., 1989; Lawson, 1988; Douville et al., 1998) such vehicles probably will emit between 2 and 6 g/mi CH_4 (the IPCC (1997) suggests a similar range (Table II)), or something on the order of 30 times the CH_4 emissions from advanced diesel HDVs.

Unfortunately, the few CH_4 emissions data for methanol HDVs cover a wide range, from near zero to over 1 g/mi. Because there are so few emissions results for methanol HDVs, and because the few there are do not agree, it is probably best to assume that, just as methanol LDVs emit less CH_4 than do gasoline LDVs, methanol HDVs emit less CH_4 than gasoline HDVs and about as much as diesel HDVs.

The one recent test of an advanced LPG HDV reported very low CH_4 emissions, on the order of 0.1 g/mi and similar to the emissions from an advanced diesel HDV (Ortech Corp., 1998). This does not seem unreasonable, given the fuel properties of LPG discussed above. The IPCC (1997) estimate of 0.24 g/mi (Table II) therefore may be too high.

There are no data on CH_4 emissions from ethanol or hydrogen HDVs. In the absence of data, we assume that the ratio of CH_4 emissions from ethanol HDVs to CH_4 emissions from methanol HDVs is the same as the ratio for LDVs, or about 3.0. Hydrogen HDVs presumably do not emit appreciable amounts of CH_4 .

4. Conclusions

Despite the international concern about emissions of GHGs from motor vehicles and powerplants, and the Kyoto Protocol establishing non-binding emission reduction targets, there still are significant knowledge gaps regarding emissions of important non-CO₂ GHGs from motor vehicles. These non-CO₂ GHGs include most notably CH₄ and N₂O, which are released in significant quantities through combustion and (in the case of N₂O) emission-control processes. Unlike emissions of CO₂, emissions of CH₄ and N₂O are determined by the complex interaction of fuels, combustion system types, control technologies, and combustion and catalyst temperatures, and they cannot be simply estimated based on fuel carbon or fuel/air nitrogen compositions.

Based on analysis of emission data from a database of CH_4 and N_2O emission measurements from conventional gasoline and alternative-fuel LDAs, LDTs, and HDVs, this paper has presented emissions estimates for a variety of different vehicle and fuel types. These estimates have then been compared with the CH_4 and N_2O emissions estimates and guidelines reported by the U.S. EPA and IPCC.

Major findings include that emissions of N_2O from conventional gasoline LDAs and LDTs that are equipped with Tier 1 emission controls appear to be much lower than currently suggested by the IPCC guidelines (IPCC, 1997), but are perhaps somewhat higher than suggested in recent EPA revisions, particularly for highmileage vehicles. On the other hand, recent (although limited) data suggest that emissions of CH₄ from Tier 1 gasoline LDAs may be somewhat lower than currently estimated by EPA. Emissions of CH₄ and N₂O from diesel vehicles and AFVs vary considerably depending on fuel type. Diesel vehicles appear to emit the same order of magnitude of N₂O as do gasoline vehicles, although the data (though sparse) indicate the possibility of somewhat lower emissions for diesel vehicles.

With regard to AFVs, advanced CNG vehicles appear to emit about 75% as much N_2O as gasoline vehicles, while the available data suggest that ethanol and LPG vehicles emit similar levels of N_2O as gasoline vehicles. CNG LDAs emit about an order of magnitude more CH₄ than early 1990s vintage Tier 0 gasoline LDAs, and about 20 times more CH₄ than Tier 1 gasoline LDAs. Meanwhile, CNG LDTs emit about 6 to 10 times more CH₄ than comparable gasoline LDTs. Interestingly, methanol LDVs emit considerably less CH₄ than gasoline LDVs, with M100 vehicles emitting about half as much, and flexible-fuel methanol vehicles emitting somewhere in between 50% and 100% of the gasoline LDV rate depending on the fuel mix. On the other hand, ethanol LDVs emit about 50% more CH₄ than gasoline vehicles, and hydrogen vehicles emit no CH₄. Finally, emissions of CH₄ from methanol, CNG, LPG, ethanol, and hydrogen HDVs appear to be about 50%, 3000%, 100%, 300%, and 0% those of diesel HDVs, respectively.

Appendix A: Compendium of N₂O and CH₄ motor vehicle emissions data

Type of vehicle	Emission control equipment	Odometer (miles)	N ₂ O emissions (mg/mi)	Ratio, NO _X /N ₂ O ^a	Reference
Gasoline LDV	No cat. converter				
NS	none	NS	0 ^b	NS	Pierotti and Rasmussen (1976)
NS	none	NS	20	NS	Robertson (1991)
1974 Chevy Impala	none	62,700	16 (15) ^c	179	Warner-Selph and Harvey (1990)
1977 AMC Pacer	none; AP	NS	5 d	400	Urban and Garbe (1979)
1977 Volvo	lean operation	200	0	-	Bradow and Stump (1987)
NS	unspecified cat.	NS	up to 21	NS	Pierotti and Rasmussen (1976)
NS	unspecified cat.	NS	200	NS	Robertson (1991)
	Ox. cat.				
1977 Mercury Marquis	OC, AP	81,700	10 (13) ^c	167	Warner-Selph and Harvey (1990)
1978 Olds Cutlass	OC, EGR	NS	18 ^d	45	Urban and Garbe (1979)
1978 Olds Cutlass	OC	NS	23 e	NS	EPA unpublished data
1977 Olds Cutlass	OC	NS	47 ^e	NS	EPA unpublished data
1978 Malibu	OC, AP	NS	8 d	86	Urban and Garbe (1979)
1978 Malibu	OC, no AP	NS	66 ^d	18	Urban and Garbe (1979)
1978 Granada	OC, AP	NS	34 d	58	Urban and Garbe (1979)
1978 Mustang	OC, no AP	NS	43	38	Urban and Garbe (1979)
NS 660 cc	OC, EGR	300	1.4, 0.3, 1.0, 0.3, 0.3 ^f	NS	Sasaki and Kameoka (1992)
8 1978 and 2 1979 cars	3-way cat. 7 w/OC 3 w/3WY	38,000–68,000	74/57 g	28/29 g	Smith and Carey (1982)
1978 Ford Pinto	3WY, OC, EGR	low	12–128 ^h	9–29 ^h	Urban and Garbe (1980)
1978 Ford Pinto	3WY, OC, EGR	0-15,000	34–35 ⁱ	19–26 ⁱ	Smith and Black (1980)
1979 Mercury Marquis	3WY, OC, EGR	low	17–141 ^h	6-238 h	Urban and Garbe (1980)
1979 Mercury Marquis	3WY, OC, EGR	0-15,000	36-60 ⁱ	27-35 ⁱ	Smith and Black (1980)
1980 Chevrolet Caprice	3WY, OC, EGR	low	63, 69 ^j	16, 17 ^j	Braddock (1981)
1978 Ford Pinto	3WY, OC, EGR	low	84, 84 j	12, 11 ^j	Braddock (1981)
1977 Volvo	3WY	200	64 ^k	14	Bradow and Stump (1987)
1978 Saab	3WY	low	5-37	10-31	Urban and Garbe (1980)
1978 Saab	3WY	0-15,000	16-35 ⁱ	10-34	Smith and Black (1980)
1978 Pontiac Sunbird	3WY, EGR	low	6-44	21-44	Urban and Garbe (1980)
1978 Pontiac Sunbird	3WY, EGR	0-15,000	32–48 ⁱ	20-40	Smith and Black (1980)
1980 Buick Century	3WY, EGR	low	101, 137 ^j	8, 10 ^j	Braddock (1981)
1980 Lincoln Continental	3WY, EGR	low	72, 37 j	24, 38 ^j	Braddock (1981)
1983 Buick Regal	3WY, AP	83,000	231 (239) ^c	8	Warner-Selph and Harvey (1990)
2.2 liter Renault	3WY, EFI	NS	50–55 ¹	NS	Prigent and De Soete (1989)
1989-1990 U.S. cars	3WY	NS	13–78 [42] ^m	5-29 ⁿ	Dasch (1992)
1990 Chevy Lumina van	3WY	NS	89	NS	Dasch (1992)
1990 Chevy Lumina	3WY, TBI	5,300	42 (45) ^c	6	Warner-Selph and Harvey (1990)
1990 Ford Probe	3WY, MPFI	11,500	74 (86) ^c	15	Warner-Selph and Harvey (1990)
Ford Taurus	3WY	low	46	24	Ford (1988b)
Ford Topaz	3WY	low	43	27	Ford (1988b)
1986 Ford Tempo	3WY, EGR, EVP	47,643	211, 1360	NS	Ballantyne et al. (1994)
1986 Oldsmobile Calais	3WY, EGR, EVP	50,108	120, n/a 0	NS	Ballantyne et al. (1994)
1987 Toyota Pickur	3WY ECD EVD	75,440 25.024	192,00 -	IND	Ballantyne et al. (1994)
1988 Ford Tourne Was	3WV ECD EVD	55,054 57 484	55, 50 - 114 53 0	NS	Ballantyne et al. (1994)
1980 Honda Accord	3WV ECD EVD	57,464	72 114, 35	NS	Ballantyne et al. (1994)
1989 Honda Civic	3WY EVP	66 697	88 46 ⁰	NS	Ballantyne et al. (1994)
1989 Volkswagen GTI	3WY EVP	58 522	85 66 ⁰	NS	Ballantyne et al. (1994)
	,		, 00	- 10	(1))++ (1))+)

$\label{eq:able} \begin{array}{l} \mbox{Table A-I} \\ \mbox{N}_2\mbox{O emissions from motor vehicles} \end{array}$

Type of vehicle	Emission control equipment	Odometer (miles)	N ₂ O emissions (mg/mi)	Ratio, NO _x /N ₂ O ^a	Reference
1990 Mazda 323	3WY, EVP	21,095	126, 46 [°]	NS	Ballantyne et al. (1994)
1992 Honda Civic LX	3WY, EVP	2,403	75, 25 ^o	NS	Ballantyne et al. (1994)
1992 Suzuki Swift	3WY, EVP	2,299	21, 11 ⁰	NS	Ballantyne et al. (1994)
1992 Pontiac Sunbird	3WY, EGR, EVP	2,290	126,65 ^o	NS	Ballantyne et al. (1994)
1992 Chevrolet Pickup	3WY, EGR, EVP	2,367	264,47 ^o	NS	Ballantyne et al. (1994)
1992 Chevrolet Astro	3WY, EGR, EVP	2,251	209,70 [°]	NS	Ballantyne et al. (1994)
1989 Volvo 740	3WY	NS	72, 13, 271 P	NS	Jobson et al. (1994)
NS 1800 cc	3WY, EGR	600	26.7, 22.1, 47.0, 13.8, 2.7 9	NS	Sasaki and Kameoka (1992)
NS 1500 cc	3WY, EGR	20,000	34.3, 7.4, 54.7, 20.6, 12.2 ^q	NS	Sasaki and Kameoka (1992)
NS 2000 cc	3WY, EGR	32,000	197, 116.6, 77.9, 17.4, 25.1 ^q	NS	Sasaki and Kameoka (1992)
3 1992 Ford 4.9 liter vans	3WY	5,000, 15,000, 25,000	14, 30, 44 ^r (RFG)	NS	Battelle (1995)
3 1992 Dodge 5.2 liter vans	3WY	5,000, 15,000, 25,000	22, 54, 86 ^r (RFG)	NS	Battelle (1995)
3 1992 Chevy 4.3 liter vans	3WY	5,000, 15,000, 25,000	254, 301, 326 ^r (RFG)	NS	Battelle (1995)
1386 California vehicles	3WY, EGR	NS	mean 19.3 (16.6 to 32.8)	0.56	Jimenez et al. (1997)
12 Tier 1 passenger vehicles	3WY	24,000-75,000	mean 46.3 (24 to 124)	NS	Michaels (1998)
5 Tier 1 light trucks/ SUVs	3WY	16,000-75,000	mean 108.9 (80 to 167)	NS	Michaels (1998)
Effect of catalyst age on g	asoline LDVs				
NS 2200 cc	3WY	new	37.7, 26.6, 15.7 ^s	3.5, 0.94, 2.87 ^s	De Soete (1993)
NS 2200 cc	3WY	15,000	77.5, 104.5, 69.2 ^s	3.25, 1.28, 1.54 ^s	De Soete (1993)
NS 2300 cc	3WY	New	392.8, 265.6 ^t	NS	Lindskog (1989) in De Soete (1993)
NS 2300 cc	3WY	9,300	502.3, 397.7 ^t	NS	Lindskog (1989) in De Soete (1993)
NS 2100 cc	3WY	new	34.9, 22.2 ^u	NS	Prigent and De Soete (1992)
NS 2100 cc	3WY	150 hours	52.8, 32.2 ^u	NS	Prigent and De Soete (1992)
3 1992 Ford 4.9 liter vans	3WY	5,000, 15,000, 25,000	14, 30, 44 ^r	NS	Battelle (1995)
3 1992 Dodge 5.2 liter vans	3WY	5,000, 15,000, 25,000	22, 54, 86 ^r	NS	Battelle (1995)
3 1992 Chevy 5.7 liter	3WY	5.000, 15.000,	254, 301, 326 ^r	NS	Battelle (1995)
vans		25,000	- , ,		
Diesel LDV					
1.9 liter Citroen	NS	NS	50–58 ¹	NS	Prigent and De Soete (1989)
NS	NS	NS	50	NS	Robertson (1991)
NS 1800 cc	EGR	17,500	10.5, 10.8, 13.7, 10.8, 7.9 ^q	NS	Sasaki and Kameoka (1992)
Gasoline HDV		11.000			P 1
1979 Ford 1979 Int'l Harvester	NS NS	11,000 15,000	96 48	133 272	Dietzmann et al. (1981) Dietzmann et al. (1981)
Diesel HDV					
1977 DDT 2-stroke	NS	60,000	68–85 ^v	494-571	Dietzmann et al. (1980)
1979 Caterpillar 4-stroke	NS	7,000	22–35 ^v	545-785	Dietzmann et al. (1980)
1979 Mack 4-stroke	NS	69,000	50–58 ^v	500-565	Dietzmann et al. (1980)
1979 Cummins 4-stroke	NS	26,000	35–47 ^v	517-773	Dietzmann et al. (1980)
Diesel truck engine	NS	NS	2000	NS	Robertson (1991)

(Continued)

Type of vehicle	Emission control equipment	Odometer (miles)	N ₂ O emissions (mg/mi)	Ratio, NO_X/N_2O^a	Reference
Flexible-fuel methanol/gasoli	ine vehicles				
Ford Escort-1	3WY	4,000 ^w	61 M100; 105 M85/I; 99 I	4.3 M100;	Ford (1988a) X
				4.1 M85/I; 4.4 I	
Ford Escort-2	3WY	50,000 ^w	119 M100; 111 M85/I;	4.6 M100;	Ford (1988a) X
			147 I	5.9 M85/I; 5.6 I	
Ford Escort-2	no catalyst	NS	-3 M100; -2 M85/I	-	Ford (1988a) ^x
Ford Crown Victoria-1	3WY	0/8,000/	6/17/16 M85/G	90/34/53	Ford (1988a) X
		16,000 ^w		M85/G	
Ford Crown Victoria-2	no catalyst	NS	0 M100; 3 M85/G	-	Ford (1988a) ^x
Ford Crown Victoria-2	3WY	3,000 ^w	14 M100; 12 M85/G	37 M100;	Ford (1988a) X
				59 M85/G	
3 Ford 4.9 liter 6-cyl. vans	3WY	5,000, 15,000,	61 M85, 65 M85, 70 M85 ^r	NS	Battelle (1995)
		25,000			
ana 1:1					
CNG vehicles					
3 1992 Ford 4.9 liter vans	3WY	5,000, 15,000, 25,000	26, 36, 441	NS	Battelle (1995)
3 1992 Dodge 5.2 liter	3WY, CNG opt.	5,000, 15,000,	9, 24, 39 ^r	NS	Battelle (1995)
vans		25,000			
3 1992 Chevy 5.7 liter	3WY, Engelhard	5,000, 15,000,	47, 50, 54 ^r	NS	Battelle (1995)
vans	CNG	25,000			
D 111					
Propane venicies	2007	5 000 15 000	00 54 605	210	D II. (1005)
3 1992 Ford 4.9 liter vans	зwY	5,000, 15,000,	99, 74, 68*	1N5	Battelle (1995)
2 1002 CL 5 7 1	2017/	25,000	<0.07.101F	210	D II. (1005)
3 1992 Chevy 5.7 liter	3 W Y	5,000, 15,000,	69, 87, 101	NS	Battelle (1995)
vans		25,000			

Notes: LDV = light-duty vehicle; HDV = heavy-duty vehicle; 3WY = three-way catalytic converter; OC = oxidation catalytic converter; AP = is purps; EDV = nginetary endsy endsy endsy endset, 5W 1 = infectively calarytic converted, for 0 = oxtransition calarytic converted, and a purps; EGR = exhaust gas recirculation; EFF = electronic fuel electronic fuel injection; TBI = information injection; TBI = information injection; TBI = information; EFF = electronic fuel electronic fuel injection; TBI = information; gasoline.

EPA testing protocol requires that all vehicular emissions be corrected for background concentration (i.e., that the ambient concentration be subtracted from total measured emissions). We therefore assume that all reported emissions are net of background, unless it is clear that they are not

All LDVs except those not identified (noted as 'NS' under 'vehicle' column) were tested over the FTP. All HDVs except the 'diesel truck engine' (Robertson, 1991) were tested over the chassis version of the 1983 Heavy Duty Transient Cycle (HDTC). ^ The same vehicle as the one immediately above (i.e., not a different vehicle of the same model). Vehicles of the same description but not marked with 'A' are the same model but different vehicles. ^a This is the retio of and immediately above (i.e., not a different vehicle of the same model). Vehicles of the same description but not marked with 'A' are the same model but different vehicles.

^a This is the ratio of g/mi emissions, not the ratio of ppm, except as noted.

b A gross concentration of 0.1-0.2 ppm was measured in the exhaust. The background N₂O is 0.3 ppm. ^c The emission value in parentheses is the result when the vehicle was run on gasoline containing 16.4% MTBE.

^d The mg/mi figure shown is the reported average of several tests with the emission control system functioning properly. Disabling the EGR increased N_2O emissions by a factor of 1.5-3.0. (Prigent and de Soete (1989) also found that N_2O emissions increased when EGR was disconnected). Other malfunctions were relatively unimportant.

e The emission rates reported in test cycles other than the FTP were similar to the FTP emission rates

¹ The five numbers represent, respectively, results for the Japanese '11-step' driving cycle (with cold start), the Japanese '10-step' driving cycle, urban driving cycle at 10 km/hr, urban driving cycle at 20 km/hr, and urban driving cycle at 50 km/hr. Tests were performed using a chassis dynamometer, sample collection in a heated (393 K) steel tank, and gas chromatography analysis at 543 K. ^g The first number is the average for the 10 cars as received; the second number is the average after the cars were tuned up. The 10 vehicles

were: a 1978 Buick Regal (OC, EGR), 2 1979 Mercury Marquis (3WY, EGR, AP); a 1978 Ford Granada (OC, EGR, AP); a 1978 Volvo 245 DL (3WY); a 1978 Oldsmobile Cutlass (OC); a 1978 Chevrolet Malibu (OC, EGR, AP); a 1978 Chevrolet Monte Carlo (OC, EGR); a 1978 Ford Fiesta (OC, EGR, AP); and a 1978 Chrysler New Yorker (OC, EGR). The Malibu was the only vehicle that had been previously tested (Urban and Garbe, 1979; the model with the air pump [AP]); most of the others were the same model as previously tested vehicles (see entries in this table), but not the same actual vehicle.

h The vehicles were tested with a variety of malfunctions, including: a disabled oxygen sensor, disabled EGR, 12% misfire, and high oil consumption. The very high emissions from the Pinto and the Marquis were the result of a disabled EGR system.

¹ The first emission number is at zero miles; the second is at 15,000 miles. Emissions were consistently higher in the NYCC and lower in the HFET than in the FTP. $\mathrm{N_2O}$ emissions did not vary appreciably with the type of gasoline.

j The first number is the result when the FTP was run at normal temperature (78° or 81° F); the second number is the result at low temperature (55° , 58° , 60° , or 61° F). Laurikko and Nylund (1993) found that N₂O emissions were higher in a +20 °C cold-start test (FTP) than in a -20 °C cold-start test.

(Continued)

¹ The SO₂ content of the gas was reported to be 12 ppm for undiluted samples, and ten times less for diluted samples. This is well below what appears to be the concentration that actuates artifactual N₂O formation. ^m The number in the brackets is the average value.

ⁿ This range includes the NO_X/N_2O ratios measured for the 1978 Pontiac Sunbird, the 1978 Saab, the 1980 Lincoln Continental, and the 1980

¹ The five numbers represent respectively, results to the spannesse T1-step utving cycle (with constant), the spannesse T1-step utving cycle, urban driving cycle at 10 km/hr, urban driving cycle at 20 km/hr, and urban driving cycle at 50 km/hr. Tests were performed using a chassis dynamometer, sample collection in a heated (393 K) steel tank, and gas chromatography analysis at 543 K.
¹ Tests were performed using an on-line FTIR analyzer. The three numbers correspond to the three vehicle mileage figures listed, and each number is a mean value for tests of three different vans by each manufacturer. Note that the Dodge CNG vans are among the first to use a catalyst system deviated engineering for CMC which was by each manufacturer.

designed and optimized for CNG vehicles. ⁸ The three numbers represent, respectively, tests performed on the ECE 15-04 Driving Cycle (with cold start), the European Urban Driving Cycle

(EUDC), and the ECE Driving Cycle. As in note a, the ratio of NO_x to N_2O is based on mass and not ppm.

The emissions data have been converted from units of grams of N₂O per kilometer. The first number represents emissions based on the Swedish driving cycle with cold start, and the second number represents emissions on the Swedish driving cycle with hot start. ^u The emissions data have been converted from units of grams of N₂O per kilometer. The first number represents emissions based on the ECE 15 (cold start) driving cycle and the second number represents emissions based on the EUDC. ^v Emissions varied with the quality of the diesel fuel used. ^w Miles exemundated on the orthorized represents emissions based on the EUDC.

W Miles accumulated on the catalytic converter.

⁶ Mites accumulated on the catalytic converse. ⁷ Ford reported detailed speculated FTIR data for two flexible-fuel Escorts and two flexible-fuel Crown Victoria, at different methanol/gasoline mixtures, and with different catalysts and catalyst ages. The Escort was tested on indolene, the Crown Victoria on gasoline.

Table A-II
Methane emissions from highway vehicles

Type of vehicle	Emission control equipment	Odometer (miles)	CH ₄ emissions (g/mi)	Reference
Gasoline LDVs				
Ford F250 truck (see CNG)*	none	4,000-9,000	0.20	BC Research (1986)
16 1975-'78 passenger cars	various	various	0.19-0.32	Sigsby et al. (1987)
1978 Olds Cutlass ^a	OC, EGR	NS	0.06-0.08	Urban and Garbe (1979)
Chevy S-10 truck (see CNG)*	OC, EGR	4,000-9,000	0.02	BC Research (1986)
4 1978–'80 passenger cars b	3WY, EGR; 2 w/OC	low	0.09–0.39	Braddock (1981)
4 1978–'79 passenger cars ^c	3WY; 2 cars w/OC	low	0.03–0.11 [0.07]	Smith and Black (1980)
30 1979-'82 passenger cars	various	various	0.14-0.18	Sigsby et al. (1987)
Dodge 600es truck*	3WY	4,000-9,000	0.04	BC Research (1986)
1981 Rabbit (see MeOH car)*	3WY	25,000	0.03	CARB (1985)
1981 Escort (see MeOH car)*	3WY	38,000	0.23	CARB (1985)
1984 Ford Mustang (see MeOH car)*	3WY	100	0.14 ^d	Gabele et al. (1985)
1984 Chev. Cavalier (see MeOH car)*	3WY	4500	0.04 ^d	Gabele et al. (1985)
9 1984–1987 4-cylinder passenger cars	various	3,000-62,000	0.08–0.15 ^e	Stump et al. (1989)
11 1985-1987 4-8 cylinder cars	various	7,000-64,000	0.13-0.20	Stump et al. (1989)
3 1992 Ford 4.9 liter 6-cyl. vans (see	3WY	5,000, 15,000,	0.09, 0.11, 0.13 ^f (RFG)	Battelle (1995)
CNG, MeOH, LPG)*		25,000	0.11, 0.11, 0.12 ^f (RF-A)	
3 1992 Dodge 5.2 liter V8 vans (see	3WY	5,000, 15,000,	0.05, 0.07, 0.08 ^f (RFG)	Battelle (1995)
CNG)*		25,000	0.08, 0.08, 0.08 ^f (RF-A)	
3 1992 Chevrolet 4.3 liter V6 vans (see	3WY	5.000, 15.000,	0.06, 0.07, 0.07 ^f (RFG)	Battelle (1995)
CNG. LPG)*		25.000	0.05, 0.07, 0.08 ^f (RF-A)	
1992 Chev. pickup, 1993 Ford Crown	3WY (one dual)	5.000 (but	[0.06] FTP. [0.03] REP (RFG)	Auto/Oil (1996)
Victoria, 1992 Dodge wagon (see CNG)*	(,	3-WY aged to	[0.07] FTP, [0.04] REP (RF-A)	
7 1996 Ford Crown Victorias (see CNG)*	3WY	64.433: 65.909	0.0196: 0.0182: 0.0276:	NREL (1998)
		63.123: 59.424	0.0147: 0.0157: 0.0229:	
		61 443: 62 255:	0.0283 [0.021] ^h	
		57 994	0.0205 [0.021]	

506

 $[\]overline{k}$ When the oxygen sensor was disconnected, N2O emissions disappeared.

⁶⁷ This range includes the NO_X/N₂O ratios measured for the 19/8 Pontac Sunbird, the 19/8 Saab, the 1980 Eurocin Continental, and the 1980 Buick Century. ⁶⁰ The first number is the composite result from the three phases of the Urban Dynamometer Driving Schedule (UDDS). The second number is the result from the Highway Fuel Consumption Test (HWFCT). These emission tests were conducted in Canada using a fuel with a high sulfur content of approximately 700 ppm. If tested with a lower sulfur content fuel, the measured emissions would probably be lower. ⁶¹ The five numbers represent, respectively, test taken over the FTP75 cycle with no catalyst, a new catalyst, and a 'severely deteriorated' catalyst. ⁶² The five numbers represent, respectively, results for the Japanese '11-step' driving cycle (with cold start), the Japanese '10-step' driving cycle, when driving nucle at 10 humber when driving nucle at 50 humber.

Type of vehicle	Emission control equipment	Odometer (miles)	CH ₄ emissions (g/mi)	Reference
69 1993 Dodge Spirits (see MeOH)*	3WY	3.455-35.784	[0.0113] ^h RFG	Kelly et al. (1996a)
18 1993 Ford Econoline vans (see MeOH)*	3WY	4,653–31,911	[0.086] ^h RFG	Kelly et al. (1996a)
1996 Ford Crown Victoria (see CNG)*	3WY	7,600	0.012 RF-A; 0.015 RFG	GRI (1997b)
1996 Mercury Grand Marquis	3WY	8,200	0.011 RF-A; 0.012 RFG	GRI (1997b)
1995 Dodge Caravan (see CNG)*	3WY	14,990	0.031 RF-A; 0.037 RFG	GRI (1997b)
1995 Dodge Caravan (see CNG)*	3WY	10,980	0.030 RF-A; 0.033 RFG	GRI (1997b)
1995 Dodge Ram Van (see CNG)*	3WY	20,070	0.080 RF-A; 0.080 RFG	GRI (1997b)
1995 Dodge Ram Van (see CNG)*	3WY	21,660	0.070 RF-A; 0.071 RFG	GRI (1997b)
1995 Dodge Caravan (see CNG)*	cat., EGR	13,596	0.0264 RFG FTP, 0.0219 RFG REP	Black et al. (1998)
pre-1975 model years (MOBILE4)	none	over life of car	0.31	U.S. EPA (1985) ^g
post-1991 model years (MOBILE4)	3WY	over life of car	0.05	U.S. EPA (1985) ^g
gasoline LDV fleet average, 1990–2020	fleet average in	fleet average	0.12-0.04	simulation runs of
(MOBILE5)	year			MOBILE5 ^h
Gasoline HDVs Ford track	NC	11.000	2.12	Distances at al. (1081)
International Harvester truck	NS	15,000	0.28	Dietzmann et al. (1981)
5 trucks 1973 1980	NS	35,000	0.28	Black et al. (1984)
	113	105,000	0.4-1.0	
pre-1979 model years (MOBILE4)	NS	over life of truck	0.67	U.S. EPA (1991) 5
1979–1986 model years (MOBILE4)	NS	over life of truck	0.31	U.S. EPA (1991) ⁵
post-1986 model years (MOBILE4)	NS A statement in	over life of truck	0.18	U.S. EPA (1991) 5
gasoline HDV jieet average, 1990–2020 (MOBILE5)	jieet average in year	jieet average	0.28-0.18	simulation runs of MOBILE5 ^h
Natural gas dedicated LDV				
1983 Ford 3.81 V-6	none	low	0.9–2.5 ^m	Swain et al. (1983)
1984 Ford Ranger Pickup	OC, EGR	low	1.06	Adams (1985)
1984 Ford Ranger Pickup	OC, EGR	NS	1.17–1.31 ¹	Bruetsch (1988)
1989 Dodge Ram Van	3WY/none ¹	4,000	1.47/1.49 ^m	Gabele et al. (1990a)
3 1992 Ford 4.9 liter 6-cyl. vans	3WY	5,000; 15,000; 25,000	1.78; 2.64; 3.34 ^f	Battelle (1995)
3 1992 Dodge 5.2 liter V8 vans	3WY, CNG optimized	5,000; 15,000; 25,000	0.44; 0.74; 1.0 ^f	Battelle (1995)
3 1992 Chevrolet 5.7 liter V8 vans	3WY, Engelhard CNG	5,000; 15,000; 25,000	1.69; 2.58; 3.29 ^f	Battelle (1995)
1992 Chev. pickup, 1993 Ford Crown	3WY (one dual)	5,000 (but 3WY	[0.92] FTP, [0.49] REP (CG1)	Auto/Oil (1996)
Victoria, 1992 Doge wagon		aged to 50,000)	[0.91] FTP, [0.47] REP (CG4) [avg. of 3 vehicles]	
7 1996 Ford Crown Victorias	3WY	63,035; 62,917;	0.854; 0.469; 0.405; 0.605;	NREL (1998)
		60,246; 59,421;	0.470; 0.479; 0.887	
		58,664; 59,130; 56,924	[0.595] ^h	
1996 Ford Crown Victoria	3WY	low	0.134	GRI (1998)
1995 Dodge Ram Van	3WY	low	0.395	
2 1996 Ford Crown Victorias	3WY	4,100; 6,000	0.124; 0.134	GRI (1997b)
2 1995 Dodge Caravans	3WY	5,590; 4,150	0.106; 0.072	GRI (1997b)
1994 Dodge Ram Van	3WY	24,570	0.434	GRI (1997b)
1996 Dodge Ram Van	3WY	3,000	0.284	GRI (1997b)
1994 Dodge Caravan	cat., EGR	5,030	0.1025 FTP, 0.0679 REP	Black et al. (1998)
Natural gas dual-fuel LDVs	2020	4 000 0 000	1.8. 3.0 ¹ CNG: 0.20 C	DC Dasaarek (1006)
FORU F 250 ITUCK	none	4,000-9,000	1.6-5.0° CNG; 0.20 G	DC Research (1986)
13 1977–1981 passenger cars	NS	NS	0.00-3.13 [1.44] CNG 0.02–0.18 [0.07] G	Aerospace (1982)J
1986 Chevrolet C30 van	OC, AP	120,000	7.31	Gabele et al. (1990b)

Type of vehicle	Emission control equipment	Odometer (miles)	CH ₄ emissions (g/mi)	Reference
1979 Impala	OC, EGR, AP	low	0.67 CNG; 0.06 I; 0.06 I	Peninga (1981) ^k
Chevy S-10 truck	OC, EGR	4,000-9,000	1.7–2.5 ⁱ CNG; 0.02 G	BC Research (1986)
Dodge 600es truck	3WY	4,000-9,000	0.6–1.4 ⁱ CNG; 0.02 G	BC Research (1986)
1985 Ford Ranger	3WY	NS	2.19-4.38	Overby and Regdon (1987)
1984 GM Delta 88	3WY, EGR	high	2.37–2.46 ¹ CNG; 0.08 G	Bruetsch (1988)
1986 Mercury Marquis	3WY?	NS	2.63-3.59	NGV Coalition (1989)
1986 Buick Park Avenue	3WY?	25,000	1.80	CARB (1989)
1987 Ford Crown Victoria	3WY, EGR	low	3.03–3.55 ¹ CNG; 0.11 G	Bruetsch (1988)
1987 GM Celebrity	3WY, EGR	low	1.41–1.50 ⁴ CNG; 0.02 G	Bruetsch (1988)
1989 Buick LeSabre	3WY, EGR	2,500	1.51 CNG; 0.013 I	CARB (1991)
1990 Ford Taurus	3WV EGR	4 100	1.82 CNG; 0.04 I 1.75 CNG; 2.11 CH .: 0.05 I	CARB (1991)
1990 Douge Dynasty 1991 Ford Taurus (Impco mixer)	3WY?	4,100 NS	1.75 CNO, 2.11 CH4, 0.05 I	CARB (1991)
1991 Ford Taurus (S & S mixer)	3WY?	NS	0.81	CARB (1992)
1990 Chevrolet Astrovan (truck)	3WY, EGR	11,000	2.08	CARB (1992)
1994 GMC 1500 Pickup	3WY	4,750	0.52	GRI (1995)
Natural gas dual-fuel MDVs				
1989 Ford Club Wagon	CC, EGR/air	13,000	2.81	CARB (1991)
1990 Ford F-350 XLT	CC, EGR/air	800	0.27 1	CARB (1991)
Natural gas HDVs			27.20	DOD 1 (1005)
Diesel dual-fuel pilot	NS	NS	27.2°	BC Research (1987)
GMC 454 CID V-8 bus engine	3W Y	low	0.6; 2.4 P	Jones et al. (1988)
Cummins I -10 lean burn engine	none	IOW	0.4 I 4 0 r	Alson et al. (1989)
1992 DDC 6V-92TA DDEC II 2-stroke	NS	NS	6.5 ^x	Douville et al. (1998)
(high-pressure DI)				
Diesel HDVs				
1979 Caterpillar 4-stroke	NS	7,000	0.05	Dietzmann et al. (1981)
1979 Mack 4-stroke	NS	69,000	~ 0	Dietzmann et al. (1980)
1979 Cummins 4-stroke	NS	26,000	~ 0	Dietzmann et al. (1980)
1977 DDT 2-stroke	NS	60,000	~ 0	Dietzmann et al. (1980)
1992 DDC 6V-92TA DDEC II 2-stroke	NS	NS	1.4 *	Douville et al. (1998)
pre-1982 model years (MOBILE4)	NS	over life of truck	0.15	U.S. EPA (1991) 5
nost 1087 model years (MOBILE4)	NS	over life of truck	0.12	U.S. EFA (1991) 8
diasal HDV flaat avarage 1990-2020	no fleet average in	over uje oj truck flaat avarana	0.10	U.S. EFA (1991) [©]
(MOBILE5)	year	Jieei uveruge	0.12-0.10	MOBILE5 ^h
Methanol dual-fuel LDVs				
Ford Crown Victoria	no catalyst	NS	0.039 M100; 0.72 M85/G	Ford (1988a)
Ford Crown Victoria	3WY	3,000 on catalyst	0.037 M100; 0.031 M85/G	Ford (1988a)
Ford Escort	no catalyst	NS	0.031 M100; 0.034 M85/I	Ford (1988a)
Ford Escort	3WY	5,000 on catalyst	0.020 M100; 0.025 M85/I; 0.037 I	Ford (1988a)
7 1987 Ford Crown Victorias	3WY	0-16,000	0.02-0.06 [0.04] M85/G:	CARB (1988)
			0.05–0.10 [0.07] M50/1;	
1987 FFV Ford Crown Victoria	2-CC, 2-UF, EGR	22,000	0.023 M100; 0.046 M85/I; 0.116 I; 0.145 E85/I;	CARB (1991)
1987 FFV Ford Crown Victoria	2-CC, 2-UF, EGR	43,700	0.171 E95/I 0.056 M85/I; 0.139 E85/I; 0.110 I	CARB (1991)
1987 FFV Ford Crown Victoria	2-CC, 2-UF, EGR	15,000	0.049 M85/I; 0.084 M25/I; 0.086 I	CARB (1991)
1987 FFV Ford Crown Victoria	2-CC, 2-UF, EGR	61,000	0.079 M85/I; 0.0192 I	CARB (1991)
1988 VFV Chevrolet Corsica	3WY	4,000	0.003 M100; M50/I	CARB (1988)

Type of vehicle	Emission control	Odometer	CH ₄ emissions	Reference
	equipment	(miles)	(g/mi)	
1988 VFV Chevrolet Corsica	3WY-HC	2,300	0.014 M85/US	CARB (1991)
1988 VFV Chevrolet Corsica	3WY	4,500	0.010 M100; 0.029 M50/I; 0.031 I	Gabele (1990b) ^s
2.5-liter GM VFV	3-WY?	NS	0.0024 M100; 0.036 G	Williams et al. (1990)
1989 FFV Toyota Corolla	3WY, EGR	4,700-11,300	0.049 M85/I; 0.183 I	CARB (1991)
1988 FFV Nissan Stanza	3WY, EGR	15,700	0.023 M85/US; 0.027 US	CARB (1991)
1989 VFV Chevrolet Corsica	3WY, EGR	21,000	0.050 M85/I; 0.064 M50/I; 0.072 I	CARB (1991)
1990 GTMV Plymouth Voyager	3WY	1,900-3,200	0.028 M85/US; 0.079 US	CARB (1991)
1990 FFV Plymouth Voyager	3WY	2,000-2,500	0.014 M85/US; 0.046 US	CARB (1991)
2 1981 VW Rabbits	3WY	4,500	0.01-0.02 M95	CARB (1985)
2 1981 VW Rabbits	3WY	22,000	0.02-0.03 M90	CARB (1985)
2 1981 VW Rabbits	3WY	56,000-66,000	0.03-0.13 M85/G	CARB (1988)
2 1981 Ford Escort Wagons	3WY	5,000-50,000	0.07 M90-95	CARB (1985)
1981 Ford Escort Wagon	5WY 2WV	85,000-115,000	0.09 M90	CARB (1985)
1982 Unevrolet Citation 9 1093 Ford Facort Wasses	SWY 2WV	30,000-40,000	0.05 M85-90	CARB (1985)
o 1965 FOID ESCOIT Wagons		2 400	0.01-0.14 [0.06] * M90	CARB (1985)
1965 PORTAC PROPERTY	SW I SWV	2,400 1 500	0.02 M88 0.06 M90	CAKB (1985) Gabele et al. (1985)
unspecified developmental vahiale	SW I NS	1,500 NS	0.00 M190	Williams at al. (1983)
1985 Toyota Camry	3WV	0.26.000	0.02 M85/G	CAPB (1089)
1985 Toyota Camry	none	0-26,000	0.02 M85/G	CARB (1988)
1986 Toyota Carina	3WY	0-9.000	0.02 M85/G	CARB (1988)
2 1986 Ford Crown Victorias	3WY	2 5000-15 000	0.037 M85/J	CARB (1991)
2 1986 Ford Crown Victorias	3WY	29.000-49.000	0.057 M85/I	CARB (1991)
1989 Toyota Corolla	2 CC, 2-UF. EGR	4,000-15.000	0.029 M85/I	CARB (1991)
1990 DI turbo CI VW Jetta	pt. cat., EGR	2,300	0.07 M100	Bruetsch and Hellman (1991)
3 Ford 4.9 liter 6-cyl. vans	3WY	5,000, 15,000, 25,000	$0.04,0.05,0.06~\mathrm{M85}\mathrm{f}$	Battelle (1995)
71 1993 FFV Dodge Spirits	3WY	3,844-26,126	[0.018 M85; 0.024 M50; 0.024 RFG] ^h	Kelly et al. (1996a)
16 1992–93 FFV Ford Econoline vans (prototypes)	3WY	3,359–28,218	[0.034 M85; 0.058 M50; 0.063 REG1 ^h	Kelly et al. (1996a)
1993 FFV Ford Taurus	3WY, EGR	16,996	0.0248 M85 FTP, 0.0151 M85 REP, 0.0137 RFG FTP, 0.0240 REC REP.V	Black et al. (1998)
1993 FFV Chevy Lumina	3WY, EGR	17,700	0.0040 RFG REP ³ 0.1072 E85 FTP, 0.0505 E85 REP, 0.0249 RFG FTP, 0.0400 REC REP ³	Black et al. (1998)
1993 FFV Dodge Spirit	cat., EGR	24,039	0.0490 KFG KEP ³ 0.0234 M85 FTP, 0.0465 M85 REP, 0.0393 RFG FTP, 0.0467 RFG REP ⁹	Black et al. (1998)
Methanol HDVs				
MAN spark-ignited 6-cyl. engine 1	OC	new?	0.002 ^v M100	Ullman and Hare (1986)
MAN spark-ignited 6-cyl. engine 2	OC	28,300	0.04; 0.12 ^w M100	Ullman and Hare (1986)
DDAD 6V-92TA spark-assisted	2-stroke	8900	1.17; 0.72 ^w M100	Ullman and Hare (1986)
LPG LDVs and HDV				
1988 Dual-fuel LPG Chev. 1500 truck	NS	14,000	0.046	CARB (1989)
1989 Dual-fuel LPG Oldsmobile 88	3WY, EGR	22,700	0.064 LPG; 0.047 US	CARB (1991)
1989 Dual-fuel LPG Pontiac 6000 LE	3WY, EGR	31,300	0.042 LPG; 0.037 I	CARB (1991)
1991 LPG Chevrolet Lumina	5W Y	4,000	0.022 (FTP) 0.149 (NYCC)	Gabele (1992)
3 Ford 4.9 liter 6-cyl. LPG vans	3WY	5,000; 15,000; 25,000	0.12; 0.14; 0.16 ¹	Battelle (1995)
3 Chevrolet 5.7 liter V8 LPG vans	3WY	5,000; 15,000; 25,000	0.09; 0.11; 0.13 [†]	Battelle (1995)
1998 Cummins B5.9-195 LPG (5.9 liter, 195 horsepower HDV engine)	cat., auto. engine mgt., closed loop ratio control A/F	New	0.077–0.12 ^z (EPA HDV transient cycle)	Ortech Corp. (1998)

(Continued)

Type of vehicle	Emission control equipment	Odometer (miles)	CH ₄ emissions (g/mi)	Reference
Ethanol dual-fuel LDVs				
1987 FFV Ford Crown Victoria	2-CC, 2-UF, EGR	22,000	0.023 M100; 0.046 M85/I;	CARB (1991)
			0.116 I; 0.145 E85/I; 0.171	
			E95/I	
1987 FFV Ford Crown Victoria	2-CC, 2-UF, EGR	43,700	0.056 M85/I; 0.139 E85/I;	CARB (1991)
			0.110 I	
3 1992 VFV ethanol Chevrolet Luminas	3WY	\sim 5,000	0.052 E85/I; 0.033 I	Baudino et al. (1993)
21 1992/93 VFV ethanol Chevrolet	3WY	8,000-30,000	0.37 E0 (RFG) aa; 0.050 E50;	Kelly et al. (1996b)
Luminas			0.62 E85 FTP	
Hydrogen LDV				
1979 Hydrogen pick-up truck	NS	23,000	0.00	CARB (1989)

Notes: NS = not specified; cat. = catalytic converter; 3WY = three-way catalytic converter (one that oxidizes CO and NMHCs, and reduces Notes: NS = not specified; cat. = catalytic converter; SW Y = three-way catalytic converter (one that oxidizes CO and NMFCs, and reduces NO_X); OC = oxidation catalytic converter; HC = heated catalytic converter; CC = close-coupled catalytic converter; UF = under-floor catalytic converter; EGR = exhaust-gas recirculation; LDV = light-duty vehicle; HDV = heavy-duty vehicle; GTW = gasoline-tolerant methanol vehicle, designed to run on methanol, but 'tolerant' of gasoline; FFV = flexible-fuel vehicle; VFV = variable-fuel vehicle; NGV = natural gas vehicle; I = indolene; US = US. average gasoline; DI = Direct injection; CI = compression ignition; VW = Volkswagon; CARB = California Air Resources Board; NYCC = New York City Cycle; HFET = Highway Fuel-Economy Test; REP = REP05, the EPA's high-speed, high-load driving cycle used to measure 'off-cycle' emissions; RFG = reformulated gasoline; RF-A = industry average unleaded gasoline; CG1 = industry-average natural gas (94% methane); CG4 = natural gas with relatively low CH_4 content (86%). All emissions results for LDVs were obtained over the Federal Test Procedure (FTP), unless noted otherwise. All emissions results for HDVs

were obtained from engine tests over the Heavy-Duty Transient Cycle (HDTC), unless otherwise noted. (The chassis version of the HDTC (Dietzmann et al., 1980) tests the whole chassis, not just the engine.) The EPA results are net of the background ambient concentration.

Emissions estimates in brackets [] are averages. Abbreviations following emissions (e.g., M85/I) indicate the fuel used in multi-fuel vehicles (85% methanol and the rest, 15%, indolene). Multiple gram/mile results separated by a semicolon are results for different fuels tested on the particular vehicle in the dual-fuel or multi-fuel configuration. * See the results for the same kind of vehicle tested on an alternative fuel, in this Table. The 1981 Rabbit and the 1981 Escort (tested by

1985) are production-line gasoline vehicles, and should be compared to the 1981 dedicated methanol Rabbits and Escorts tested by CARB (1985). The 1984 Mustang and the 1984 Cavalier (tested by Gabele et al., 1985) also are production-line gasoline vehicles, and should be compared to the dedicated methanol Escort tested by Gabele et al. (1985; see footnote 'f' to this Table). The trucks tested by BC Research (1986) are the same trucks tested as dual-fuel NGVs, except that the results shown under 'gasoline LDVs' were obtained prior to the installation of the CNG dual-fuel conversion kit. The Auto/Oil (1996) program tested three dedicated OEM CNG vehicles (1992/93 model years) and their gasoline counterparts. conversion kit. The Auto/Oil (1996) program tested three dedicated OEM CNG ventices (1992/95 model years) and their gasoline counterparts. As part of its 'CleanFleet' demonstration program, Battelle (1995) tested 21 vans running on California Phase II reformulated gasoline, 20 vans running on M85, 21 vans running on CNG, 20 vans on LPG, two electric vans, and 27 'control' vans using unleaded gasoline as a baseline. At each site, alternative-fuel vehicles were paired with unmodified production versions – controls – of the vehicle. ^ The same vehicle as the one immediately above (i.e., not a different vehicle of the same model). Vehicles of the same description but not

marked with a ' $^{\uparrow}$ ' are the same models but different vehicles. ^a CH₄ emissions were slightly higher when the engine malfunctioned. Emissions were much higher with rich idle: 0.52 g/mi.

b Emissions were around 0.10 g/mi for 3 of 4 vehicles, with summer fuel and at 78 °F ambient temperature, but were over 0.20 g/mi with winter

^c CH₄ emissions varied moderately with type of gasoline, and generally increased slightly from 0 to 15,000 miles. CH₄ emissions in the NYCC ^c CH₄ emissions varied moderately with type of gasoline, and generally increased slightly from 0 to 15,000 miles. CH₄ emissions in the NYCC ^c CH₄ emissions varied moderately with type of gasoline, and generally increased slightly from 0 to 15,000 miles. CH₄ emissions in the NYCC ^c CH₄ emissions varied moderately with type of gasoline, and generally increased slightly from 0 to 15,000 miles. CH₄ emissions in the NYCC ^c CH₄ emissions varied moderately with type of gasoline, and generally increased slightly from 0 to 15,000 miles. CH₄ emissions in the NYCC ^c CH₄ emissions varied moderately with type of gasoline, and generally increased slightly from 0 to 15,000 miles. CH₄ emissions in the NYCC ^c CH₄ emissions varied moderately with type of gasoline, and generally increased slightly from 0 to 15,000 miles. CH₄ emissions in the NYCC ^c CH₄ emissions is the slightly from 0 to 15,000 miles. CH₄ emissions in the NYCC ^c CH₄

^d CH₄ emissions were measured for the Mustang only. We assume that CH₄ was the same % of HC exhaust from Cavalier as from Mustang. The Cavalier is more similar in weight and power to the Escort than is the Mustang

^e The range represents emissions at different ambient temperatures. CH₄ emissions were lowest at 21 °C, which is typical of FTP test conditions, and highest at the lowest temperature (-6.7 °C).

f Tests were performed on vehicles operated over the FTP, and using an on-line FTIR analyzer. The three numbers correspond to the three vehicle mileage figures listed, and each number is a mean value for tests of three different vans by each manufacturer. Note that the Dodge CNG vans are among the first to use a catalyst system designed and optimized for CNG vehicles. ^g These are emission rates over the life of an individual model year, as opposed to the fleet-average emission rate in a designated year, which is

shown below. As explained in a note in the text, the fleet-average emission rate in year T (between 1990 and 2020) is based on emissions from each model year. Notice that the fleet-average emission rate in 2020 is the same as the emission rate for the latest model years shown, because by 2020 the fleet will be composed entirely of post-1986 gasoline HDVs, post-1987 diesel HDVs, or post-1991 LDVs. (In the case of gasoline LDVs, MOBILE5 estimates a further decline in emissions with the post-1994 model year, because of the 1990 Clean Air Act Amendments.) The model-vear emission rates shown here, from MOBILE4, can be compared with the technology-class estimates that the EPA (1999) extracted from MOBILE5, in Table III. The California Air Resources Board 'EMFAC' model gives similar results (CARB, 1986). ^h CH₄ emissions are the difference between exhaust THC and exhaust NMHC.

Emissions varied with the conversion kit.

^j The researchers actually measured CH₄ emissions from one car only, a 1978 Ford Fairmont. They assumed that CH₄ was 80% of total HCs from the 1977-model-year NGVs, 87% from later year NGVs, and 12% from gasoline vehicles. The authors did not specify the driving test cycle over which emissions were measured. The emission results on gasoline are prior to conversion to dual-fuel operation

^k The first emission result on indolene (I) is for the stock, unmodified gasoline configuration; the second is for the dual-fuel configuration, optimized for CNG, but running on gasoline (indolene).

¹ The authors reported total HCs and 4 different ways of measuring NMHCs. The range shown here is their HC minus their high highest (of the four) calculated NMHC to their HC minus their lowest NMHC. ^m Emissions varied with the spark advance and the air-to-fuel ratio. The test cycle was an approximation of the EPA-CVS (the FTP)

In The first emission result is for the FTP test, with the vehicle's 3-way catalytic converter in place. The second is the for the FTP test but with no catalyst. Emission studi to vary appreciably with ambient temperature (20°F to 105°F). CH₄ emissions were 3 g/mi in the NYCC, and 0.90 g/mi in the HFET (with the 3-way catalyst in place).

(Continued)

¹ The vehicle was equipped with a resistively heated monolithic catalyst designed to reduce cold-start HC and HCHO emissions. ¹ New vehicles emitted about 0.03 g/mi; older vehicles emitted around 0.06 g/mi, and the average was around 0.06 g/mi. Three of the vehicles had

electronic fuel injection. ^v The authors reported 70 mg CH₄ in the cold-start transient test, 0 in the hot-start test, and about 9.3 kw-hr work in both tests. We used their v^{-1} The authors reported 70 mg CH₄ in the cold-start transient test, 0 in the hot-start test, and about 9.3 kw-hr work in both tests. We used their v^{-1} The authors reported 70 mg CH₄ in the cold-start transient test, 0 in the hot-start test, 0 mg CH₄ in the cold-start transient test, 0 mg CH₄ in the cold-start test is 0 mg CH₄ in the cold-start transient test, 0 mg CH₄ in the cold-start transient test, 0 mg CH₄ in the cold-start transient test, 0 mg CH₄ is 0 mg CH₄ in the cold-start test is 0 mg CH₄ in the cold-start test is 0 mg CH₄ in the cold-start transient test, 0 mg CH₄ is 0 mg CH₄ in the cold-start test is 0 mg CH₄ in the cold-start transient test, 0 mg CH₄ in the cold-start test is 0 mg CH₄ in the cold-start test is 0 mg CH₄ is 0 mg CH₄ is 0 mg CH₄ in the cold-start test is 0 mg CH₄ in the cold-start test is 0 mg CH₄ i formula to convert these to mg/hp-hr, and then assumed 2.31 bhp-hr/mi (U.S. EPA, 1991). The engine was tested over the HDTC.

The first value was emitted over bus transient cycle; the second over the central business district transient cycle. ^x We assumed 4.64 bhp-hr/mi for diesel HDVs, to convert the data from g/bhp-hr to g/mi (Browning, 1998).

^y Results are averages of two or four tests.
^z Emissions converted from 0.029 to 0.046 g/bhp-hr using 2.67 bhp-hr/mi. Engine uses lean burn technology, with an air fuel ration of 27:1 (versus) a stoichiometric ratio of 17:1). ^{aa} The standard gasoline Lumina emitted about 0.04 g/mi $\rm CH_4$

Notes

¹ For example, Office of Technology Assessment, 1990; Energy Information Administration, 1998a, 1999; International Energy Agency, 1997; Victor, 1992 (see references).

² The U.S. has not yet formally ratified this agreement.

³ As of 1998, approximately 383,847 alternative fuel vehicles were in use in the U.S., of which 82% were light duty vehicles. Of these, 266,000 were fueled with LPG, 78,782 were fueled with CNG, 1,172 were fueled with LNG, 19,648 were fueled with M85, 200 were fueled with M100, 12,788 were fueled with E85, 14 were fueled with E95, and 5,243 were electric vehicles. Based on projections, 430,219 alternative fuel vehicles were in use in the U.S. in the year 2000, representing a 12% increase from 1998 to 2000 (Davis, 2000).

 4 CO₂ emissions can be approximated as the carbon content of the fuel multiplied by 3.664 (the ratio of the molecular mass of CO₂ to the molecular mass of carbon), on the assumption that virtually all of the carbon in fuel oxidizes to CO_2 . For data and discussions pertaining to estimating CO_2 emissions from energy use, see Grubb (1989), Marland and Pippin (1990), International Energy Agency (1991), OECD (1991), Energy Information Administration (1995, 1998b), IPCC (1997), and U.S. Environmental Protection Agency (1999).

⁵ The EPA (Michaels, 1998) believes that the 'aging effect' happens very early, but does not give evidence to support this.

⁶ Although more data on high-mileage vehicles would be useful to further support this conclusion.

⁷ The MOBILE model estimates emissions from a fleet of gasoline or diesel vehicles of a particular size class, in a designated year. In essence, the fleet-average emission rate in year T is calculated as $\sum_{MY} E_{MY,T} \cdot MF_{MY,T}$, where $E_{MY,T}$ is g/mi emissions from vehicle model year MY in year T, and MF_{MY,T} is model-year MY's fraction of total fleet miles of travel in year T. The model-year emission rate, in turn, is calculated on the basis of a 'zero-mile' emission rate when the vehicle is new, and the rate at which emissions increase ('deteriorate') as the vehicle ages. The EPA refers to these underlying estimates of zero-mile emissions and deterioration rates in order to estimate CH₄ emissions from specific technology (model-year) classes of gasoline LDVs (Table III). Documentation for a previous version of the model, MOBILE4, can be found in EPA (1991).

⁸ The main component of the organic emission from any vehicle is unburned fuel: gasoline components from gasoline vehicles, CH4 from NGVs, methanol from methanol vehicles, propane from LPG vehicles, and so on.

⁰ The result was reported in the original reference as 13 g/bhp-hr and 85–90% CH₄. We assumed 2.31 bhp-hr/mi (U.S. EPA, 1991). The engine was tested over the SAE 13-mode test. P We assume that CH_4 was 85% of the total reported HCs, and 2.31 bhp-hr/mi (U.S. EPA, 1991). The first test result shown was obtained by the

manufacturer; the second was obtained by the EPA (see also Parker, 1988). In the tests reported by Jones et al. (1988), the HDTC was modified to reflect transit bus applications. See also Alson et al. (1989) results for other EPA tests on the GMC engine.

^q We assume 2.31 hhp-hr/mi (U.S. EPA, 1991). The engine was tested over the HDTC. ^r We assumed that CH₄ was 85% of the total reported HCs, and 2.31 hhp-hr/mi (U.S. EPA, 1991). The emissions results were obtained over the

SAE 13-mode test.

Emissions were about twice as high at 40 °F. Emissions at 90 °F were similar to FTP (75°) emissions

References

- Adams, T. G.: 1985, 'The Development of Ford's Natural Gas Powered Ranger', *SAE Tech. Paper Series* (#85227), Warrendale, Pennsylvania.
- Aerospace: 1982, Assessment of Methane-Related Fuels for Automotive Fleet Vehicles, Volumes 1–3, U.S. Department of Energy, February, Washington, D.C.
- Alson, J. A., Adler, J. M., and Baines, T. M.: 1989, 'Motor Vehicle Emission Characteristics and Air Quality Impacts', in Sperling, D. (ed.), *Alternative Transportation Fuels, an Environmental and Energy Solution*, Quorum Books, Westport, pp. 109–144.
- Auto/Oil: 1996, Dynamometer Study of Off-Cycle Exhaust Emissions, Coordinating Research Council, April, Atlanta, Georgia.
- Ballantyne, V. F., Howes, P., and Stephanson, L.: 1994, 'Nitrous Oxide Emissions from Light Duty Vehicles', SAE Tech. Paper Series (#940304), 67–75.

Battelle: 1995, Clean Fleet Vehicle Emissions: Statistical Analysis Report No. 6, Columbus, Ohio.

- Baudino, J. H., Voelz, F. L., and Mack, N. J.: 1993, *Emissions Testing of Three Illinois E85* Demonstration Fleet Vehicles, Auto Research Laboratories, Harvey, Illinois.
- BC Research: 1986, *Exhaust Emission Measurements of Natural Gas Fuelled Vehicles*, prepared for the Department of Energy, Mines, and Resources of Canada, January, Vancouver.
- Black, F., Ray, W., King, F., Karches, W., Bradow, R., Perry, N., Duncan, J., and Crews, W.: 1984, 'Emission from In-Use Heavy-Duty Gasoline Trucks', *SAE Tech. Paper Series* (#841356), Warrendale, Pennsylvania.
- Black, F., Tejada, S., and Gurevich, M.: 1998, 'Alternative Fuel Motor Vehicle Tailpipe and Evaporative Emissions Composition and Ozone Potential', *J. Air Waste Manage. Assoc.* 48, 578–591.
- Braddock, J. N.: 1981, 'Impact of Low Ambient Temperature on 3-Way Catalyst Car Emissions', SAE Tech. Paper Series (#810280), Warrendale, Pennsylvania.
- Bradow, R. L. and Stump, F. D.: 1987, 'Unregulated Emissions from Three-Way Catalyst Equipped Cars', SAE Tech. Paper Series (#770369), Warrendale, Pennsylvania.
- Browning, L.: 1998, Update Heavy-Duty Engine Emission Conversion Factors for MOBILE6: Analysis of BSFCs and Calculation of Heavy-Duty Engine Conversion Factors, U.S. Environmental Protection Agency, EPA-420-P98-015, May, Ann Arbor, Michigan.
- Bruetsch, R. I.: 1988, Emissions, Fuel Economy, and Performance of Light-Duty CNG and Dual-Fuel Vehicles, U.S. Environmental Protection Agency, Office of Mobile Sources, EPA/AA/CTAB-88-05, June, Ann Arbor, Michigan.
- Bruetsch, R. I. and Hellman, K.: 1991, Evaluation of a Vehicle Equipped with a Direct Injection Engine Using Neat Methanol, U.S. Environmental Protection Agency, Office of Mobile Sources, EPA/AA/CTAB/91-06, September, Ann Arbor, Michigan.
- California Air Resources Board: 1985, *Alcohol Fueled Fleet Test Program, Fifth Interim Report*, California Air Resources Board, Mobile Source Division, MS-85-003, March, El Monte, California.
- California Air Resources Board: 1986, Methodology to Calculate Emission Factors for On-Road Motor Vehicles, November, Sacramento, California.
- California Air Resources Board: 1988, *Alcohol Fueled Fleet Test Program Eighth Interim Report*, Mobile Source Division, June, Sacramento, California.
- California Air Resources Board: 1989, *Definition of a Low-Emission Motor Vehicle in Compliance with the Mandates of Health and Safety Code Section 39037.05*, Mobile Source Division, May 19, El Monte, California.
- California Air Resources Board: 1991, Alternative Fuel and Advanced Technology Vehicle Fleet Test Program Eleventh Interim Report, Mobile Sources Division, July, El Monte, California.

- California Air Resources Board: 1992, Development and Evaluation of Ozone Reactivity Scale for Low-Emission Vehicles and Clean Fuels Regulations, Research Division, April 2, Sacramento, California.
- Chun, K. C.: 1988, Uncertainty Data Base for Emissions-Estimation Parameters: Area-Source Supplement to Interim Report, Argonne National Laboratory, ANL/EES-TM-353, April, Argonne, Illinois.
- Dasch, J. M.: 1992, 'Nitrous Oxide Emissions from Vehicles', J. Air Waste Manage. Assoc. 42, 63–67.
- Davis, S. C.: 2000, *Transportation Energy Data Book*, U.S. Department of Energy, ORNL-6959, October, Oak Ridge, Tennessee.
- De Soete, G.: 1993, 'Nitrous Oxide From Combustion and Industry: Chemistry, Emissions, and Control', *Rev de l'Institut Français du Pétrole* **48**, 413–451.
- DeLuchi, M. A.: 1991, Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity, Center for Transportation Research, Argonne National Laboratory, ANL/ESD/TM-22, November, Argonne, Illinois.
- Delucchi, M. A.: 1997, A Revised Model of Emissions of Greenhouse Gases from the Use of Transportation Fuels and Electricity, Institute of Transportation Studies – Davis, UCD-ITS-RR-97-8, February, Davis, California.
- Delucchi, M. A.: 1999, *Lifecycle Energy Use, Greenhouse Gas Emissions, and Air Pollution from the Use of Transportation Fuels and Electricity*, Institute of Transportation Studies, University of California, October, Davis, California.
- DeLuchi, M. A., Greene, D. L., and Wang, Q.: 1994, 'Motor Vehicle Fuel Economy: The Forgotten NMHC Control Strategy?', *Trans. Res.* -A 28A, 223–244.
- Dietzmann, H. E., Parness, M. A., and Bradow, R. L.: 1980, 'Emissions from Trucks by Chassis Version of 1983 Transient Procedure', SAE Tech. Paper Series (#801371), Warrendale, Pennsylvania.
- Dietzmann, H. E., Parness, M. A., and Bradow, R. L.: 1981, *Emissions from Gasoline and Diesel Delivery Trucks by Chassis Transient Cycles*, American Society of Mechanical Engineers, New York.
- Douville, B., Ouellette, P., and Touchette, A.: 1998, 'Performance and Emissions of a Two-Stroke Engine Fueled Using High-Pressure Direct Injection of Natural Gas', SAE Tech. Paper Series (#981160), Warrendale, Pennsylvania, pp. 1–8.
- Energy Information Administration: 1995, *Emissions of Greenhouse Gases in the United States* 1985–1994, U.S. Department of Energy, October, Washington, D.C.
- Energy Information Administration: 1998a, *Impacts of the Kyoto Protocol on U.S. Energy Markets and Economic Activity*, U.S. Department of Energy, October, Washington, D.C.
- Energy Information Administration: 1998b, *Emissions of Greenhouse Gases in the United States* 1997, U.S. Department of Energy, October, Washington, D.C.
- Energy Information Administration: 1999, *Analysis of the Impacts of an Early Start for Compliance with the Kyoto Protocol*, U.S. Department of Energy, July 14, Washington, D.C.
- Ford Motor Company, 1988a: Speciated Emissions Data for Methanol-Fueled Vehicles, Environmental Safety and Engineering Staff, Dearborn, Michigan.
- Ford Motor Company, 1988b: Unpublished Information, Environmental Safety and Engineering Staff, Sacramento, California.
- Gabele, P. A., Baugh, J. O., Black, F., and Snow, R.: 1985, 'Characterization of Emissions from Vehicles Using Methanol and Methanol-Gasoline Blended Fuels', J. Air Pollut. Control Assoc. 35, 1168–1175.
- Gabele, P. A.: 1990, 'Characterization of Emissions from a Variable Gasoline/Methanol Fueled Car', J. Air Waste Manage. Assoc. 40, 296–304.

- Gabele, P. A., Knapp, K. T., Ray, W. D., Snow, R., Crews, W., Perry, N., and Lanning, J.: 1990, 'Ambient Temperature and Driving Cycle Effects on CNG Emissions', SAE Tech. Paper Series (#902069), Warrendale, Pennsylvania.
- German, J.: 1995, Off-Cycle Emission and Fuel-Economy Considerations, Sustainable Transportation Energy Strategies, Asilomar Transportation and Energy Conference, Asilomar, California.
- Gas Research Institute: 1995, Evaluation of Exhaust Emissions from a Bi-Fueled Vehicle Operating on Liquid and Gaseous Fuels, GRI-95/0395, Topical Report GETA 95-01, Chicago, Illinois.
- Gas Research Institute: 1997a, Catalyst Development for Methane Emissions Abatement from Lean Burn Natural Gas Engines, GRI-97/0212, November, Chicago, Illinois.
- Gas Research Institute: 1997b, Comparison of Off-Cycle and Cold-Start Emissions from Dedicated NGVs and Gasoline Vehicles, GRI-96/0217, February, Chicago, Illinois.
- Gas Research Institute: 1998, Natural Gas Vehicles and Global Climate Change Issues, GRI-97/0415, Gas Research Bulletin, Chicago, Illinois.
- Grubb, M. J.: 1989, On Coefficients for Determining Greenhouse Gas Emissions from Fossil Fuel Production and Consumption, Energy and Environment Program, IEA/OECD Expert Seminar on Energy Technologies for Reducing Emissions of Greenhouse Gases, Paris.
- Guensler, R., Sperling, D., and Jovanis, P.: 1991, Uncertainty in the Emission Inventory for Heavy-Duty Diesel-Powered Trucks, Institute of Transportation Studies, University of California, UCD-ITS-RR-91-02, June, Davis, California.
- Hansen, J., Sato, M., Ruedy, R., Lacis, A., and Oinas, V.: 2000, 'Global Warming in the Twenty-First Century: An Alternative Scenario', *Proceedings of the National Academy of Science* 97, 9875–9880.
- Hao, W. M., Wofsy, S. F., McElroy, M. B., Beer, J. M., and Toqan, M. A.: 1987, 'Sources of Atmospheric Nitrous Oxide from Combustion', J. Geophys. Res. 92, 3098–3104.
- Harrington, W.: 1997, 'Fuel Economy and Motor Vehicle Emissions', J. Environ. Econ. Manage. 33, 240–252.
- International Energy Agency: 1991, *Greenhouse Gas Emissions: The Energy Dimension*, Organization for Economic Cooperation and Development, Paris.
- International Energy Agency: 1997, *Transport, Energy, and Climate Change*, Organization for Economic Cooperation and Development, 92-64-15691-7, November, Paris.
- IPCC: 1996, *Climate Change 1995: The Science of Climate Change*, Cambridge University Press, Cambridge, England.
- IPCC: 1997, Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 3: The Greenhouse Gas Inventory Reference Manual, Paris, France.
- Jimenez, J. L., Nelson, D. D., Zahniser, M. S., McManus, J. B., Kolb, C. E., Koplow, M. D., and Schmidt, S.: 1997, *Remote Sensing Measurements of On-Road Vehicle Nitric Oxide Emissions* and of an Important Greenhouse Gas: Nitrous Oxide, The 7th On-Road Vehicle Emissions Workshop, April, Washington, D.C.
- Jobson, E., Smedler, G., Malmberg, P., Bernler, H., Hjortsberg, O., Gottberg, I., and Rosen, A.: 1994, 'Nitrous Oxide Formation over Three-Way Catalyst', *SAE Tech. Paper Series* (#940926), Warrendale, Pennsylvania, pp. 219–230.
- Jones, W. M., Goetz, W. A., Canning, H., and Voodg, A. D.: 1988, *Closed Loop Fuel System and Low Emissions for a Natural Gas Engine*, NGV Conference The New Direction in Transportation, October 27–30, Sydney, Australia.
- Kelly, K. J., Bailey, B. K., Coburn, T. C., Clark, W., Eudy, L., and Lissiuk, P.: 1996a, 'FTP Emissions Test Results from Flexible-Fuel Methanol Dodge Spirit and Ford Econoline Vans', SAE Tech. Paper Series (#961090), Warrendale, Pennsylvania.
- Kelly, K. J., Bailey, B. K., Coburn, T. C., Clark, W., and Lissiuk, P.: 1996b, 'Federal Test Procedure Emissions Test Results from Variable-Fuel Vehicle Chevrolet Luminas', Society of Automotive Engineers, SAE Tech. Paper Series (#961092), Warrendale, Pennsylvania.

- Khazzoom, D. J.: 1995, 'An Econometric Model of Regulated Emissions for Fuel-Efficient New Vehicles', J. Environ. Econ. Manage. 28, 190–204.
- Laurikko, J. and Nylund, N. O.: 1993, 'Regulated and Unregulated Emissions from Catalyst Vehicles at Low Ambient Temperatures', Society of Automotive Engineers, SAE Tech. Paper Series (#930946), Warrendale, Pennsylvania.
- Lawson, A.: 1988, *Development of a Cummins L10 Natural Gas Bus Engine*, NGV Conference The New Direction in Transportation, October 27–30, Sydney, Australia.
- Marland, G. and Pippin, A.: 1990, *Emissions of Carbon Dioxide to the Earth's Atmosphere by Economic Activity*, Oak Ridge National Laboratory, October, Oak Ridge, Tennessee.
- Michaels, H.: 1998, Emissions of Nitrous Oxide from Highway Mobile Sources: Comments on the Draft Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990–1996, U.S. EPA, Office of Mobile Sources, EPA-420-R-98-009, August, Ann Arbor, Michigan.
- National Renewable Energy Laboratory: 1998, Barwood Cab Focus Fleet Study: Interim Project Summary, March, Golden, Colorado.
- NGV Coalition: 1989, Summary of 1988 Emission Testing of Natural Gas Vehicles, Washington, D.C.
- Odaka, M., Koike, N., and Suzuki, H.: 1996, 'Deterioration Effect of Three-Way Catalyst on Nitrous Oxide Emission', Society of Automotive Engineers, SAE Tech. Paper Series (#980676), Warrendale, Pennsylvania.
- OECD: 1991, *Estimation of Greenhouse Gas Emissions and Sinks*, Organization for Economic Cooperation and Development, August, Paris, France.
- Office of Technology Assessment: 1990, *Replacing Gasoline: Alternative Fuels for Light-Duty Vehicles*, U.S. Congress, Washington, D.C.
- Ortech Corporation: 1998, *LPG Fuel Composition Study on A Cummins B5.9-195LPG Engine*, Ortech Corporation, Mississauga, Ontario, Canada, November 10.
- Overby, K. and Regdon, R.: 1987, *Compressed Natural Gas Vehicle Performance and Emissions Study*, Alcohol Energy Systems, for Pacific Gas and Electric Company, May 12.
- Parker, W. P.: 1988, 'Brooklyn Union's Race for Clean Air: The Clean Air Bus', *Conference on* NGVs the New Direction in Transportation, October 27–30, Sydney, Australia.
- Penninga, T. J.: 1981, Evaluation of the Impact on Emissions and Fuel Economy of Converting Two Vehicles to Compressed Natural Gas Fuel, U.S. Environmental Protection Agency, Test and Evaluation Branch, Ann Arbor, Michigan.
- Pierotti, D. and Rasmussen, R. A.: 1976, 'Combustion as a Source of Nitrous Oxide in the Atmosphere', *Geophys. Res. Lett.* 3, 265–267.
- Prigent, M. and de Soete, G. D.: 1989, 'Nitrous Oxide N₂O in Engine Exhaust Gases a First Appraisal of Catalyst Impact', SAE Tech. Paper Series (#8904922), Warrendale, Pennsylvania.
- Prigent, M. and de Soete, G. D.: 1992, 'The Increase of N₂O Emissions Caused by Three-Way Automotive Catalysts', Paper 10-3 in *NIRE/IFP/EPA/SCEJ 5th International Workshop on N2O Emissions*, July 1–3, 1992, Tsukuba, Japan.
- Robertson, K.: 1991, 'Emissions of N₂O in Sweden Natural and Anthropogenic Sources', *Ambio* 20, 151–154.
- Ross, M., Goodwin, R., Watkins, R., Wang, M. Q., and Wenzel, T.: 1995, *Real-World Emissions from Model Year 1993, 2000 and 2010 Passenger Cars*, American Council for an Energy Efficient Economy, November, Washington, D.C.
- Ryan, J. V. and Srivastava, R. K.: 1989, EPA/IFP European Workshop on the Emission of Nitrous Oxide from Fossil Fuel Combustion, U.S. EPA, Office of Research and Development, EPA-600/9-89-009, October, Washington, D.C.
- Sasaki, S. and Kameoka, A.: 1992, *Nitrous Oxide Emissions from Automobiles*, 5th International Workshop on Nitrous Oxide Emissions, Research Institute of Innovative Technology for the Earth, Tsukuba, Japan.
- Sigsby, J. E., Tejada, S., Ray, W., Lang, J. M., and Duncan, J. W.: 1987, 'Volatile Organic Compound Emissions from 46 In-Use Passenger Cars', *Environ. Sci. Tech.* 21, 466–475.

- Smith, L. R. and Black, F. M.: 1980, 'Characterization of Exhaust Emissions from Passenger Cars Equipped with Three Way Catalyst Control Systems', SAE Tech. Paper Series (#800822), Warrendale, Pennsylvania.
- Smith, L. R. and Carey, P. M.: 1982, 'Characterization of Exhaust Emissions from High Mileage Catalyst-Equipped Automobiles', SAE Tech. Paper Series (#820783), Warrendale, Pennsylvania.
- Stump, F., Tejada, S., Ray, W., and Dropkin, D.: 1989, 'The Influence of Ambient Temperature on Tailpipe Emissions from 1984–1987 Model Year Light-Duty Gasoline Motor Vehicles', *Atmos. Environ.* 23, 307–320.
- Stump, F., Tejada, S., Ray, W., and Dropkin, D.: 1990, 'The Influence of Ambient Temperature on Tailpipe Emissions from 1985 to 1987 Model Year Light-Duty Gasoline Motor Vehicles – II', *Atmos. Environ.* 24, 2105–2112.
- Swain, M. R., Maxwell, R., Swain, M. N., Bedsworth, K., and Jr, R. A.: 1983, *Methane Fueled Engine Performance and Emissions Characteristics*, 1983 InterSociety Energy Conversion Engineering Conference, American Institute of Chemical Engineers.
- Ullman, T. L. and Hare, C. T.: 1986, Emissions Characterization of Two Methanol Fueled Transit Buses, Environmental Protection Agency, EPA 460/3-85-011, February, Ann Arbor, Michigan.
- U.S. Environmental Protection Agency: 1985, Compilation of Air Pollutant Emission Factors, Volume II: Mobile Sources, AP-42, 4 edn. (including supplements), Research Triangle Park, North Carolina.
- U.S. Environmental Protection Agency: 1991, Compilation of Air Pollutant Emission Factors, Vol. II, Mobile Sources, 4th edn. (including Supplement A), January, Ann Arbor, Michigan.
- U.S. Environmental Protection Agency: 1995, *Highway Vehicle Emissions Estimates II*, May, Ann Arbor, Michigan.
- U.S. Environmental Protection Agency: 1998, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–1996, draft, March, Washington, D.C.
- U.S. Environmental Protection Agency: 1999, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–1997, April, Washington, D.C.
- Urban, C. M. and Garbe, R. J.: 1979, 'Regulated and Unregulated Exhaust Emissions from Malfunctioning Automobiles', SAE Tech. Paper Series (#790696), Warrendale, Pennsylvania.
- Urban, C. M. and Garbe, R. J.: 1980, 'Exhaust Emissions from Malfunctioning Three-Way Catalyst-Equipped Automobiles', SAE Tech. Paper Series (#800511), Warrendale, Pennsylvania.
- Victor, D. G.: 1992, 'Leaking Methane from Natural Gas Vehicles: Implications for Transportation Policy in the Greenhouse Era', *Clim. Change* **20**, 113–141.
- Warner-Selph, M. A. and Harvey, C.: 1990, 'Assessment of Unregulated Emissions from Gasoline Oxygenated Blends', SAE Tech. Paper Series (#902131), Warrendale, Pennsylvania.
- Weiss, R. F. and Craig, H.: 1976, 'Production of Atmospheric Nitrous Oxide by Combustion', Geophys. Res. Lett. 3, 751–753.
- Williams, R. L., Lipari, F., and Potter, R. A.: 1990, 'Formaldehyde, Methanol, and Hydrocarbon Emissions from Methanol-Fueled Cars', J. Air Waste Manage. Assoc. 40, 747–756.

(Received 16 December 1999; in revised form 14 August 2001)