
Electronic copy available at: http://ssrn.com/abstract=1558744

 
 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The optimal portfolio of emissions abatement and 

low-carbon R&D depends on the expected 

availability of negative emission technologies 

 

 

Derek M. Lemoine*, Sabine Fuss, Jana Szolgayova, 

Michael Obersteiner, Daniel M. Kammen 

 

*Energy and Resources Group 

University of California, Berkeley 

(dlemoine@berkeley.edu) 

 

 

 

 

 

 

 
Energy and Resources Group Working Paper ERG10-001 

University of California, Berkeley 

http://erg.berkeley.edu/working_paper/index.shtml 

 

 
September 2010 



Electronic copy available at: http://ssrn.com/abstract=1558744

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Energy and Resources Group working paper series 

This is a paper in the Energy and Resources Group working paper series. 

This paper is issued to disseminate results of and information about research at the University 

of California. Any conclusions or opinions expressed are those of the author(s) and not 

necessarily those of the Regents of the University of California, the Energy and Resources 

Group or the sponsors of the research. Readers with further interest in or questions about the 

subject matter of the paper are encouraged to contact the author(s) directly. 

 

 



The optimal portfolio of emissions abatement and low-carbon R&D

depends on the expected availability of negative emission

technologies

Derek M. Lemoine∗, Sabine Fuss†, Jana Szolgayova†‡,
Michael Obersteiner†, Daniel M. Kammen§
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Abstract

Combining policies to remove carbon dioxide (CO2) from the atmosphere with policies to
reduce emissions can potentially decrease CO2 concentrations to earlier levels. We model the
optimal selection of a dynamic portfolio of abatement, research and development (R&D), and
negative emission policies under an exogenous CO2 constraint and with stochastic technological
change. We find that near-term abatement is not sensitive to the availability of R&D policies,
but the anticipated availability of negative emission strategies can reduce near-term abatement
if CO2 targets are sufficiently ambitious. Further, planning to develop and deploy negative
emission technologies can shift optimal R&D funding from breakthrough carbon-free technolo-
gies into incremental lower-carbon technologies. Importantly, when the goal is to maintain
the present CO2 concentration in the year 2100, an optimized portfolio with negative emission
strategies can be 80% cheaper than an optimized portfolio lacking such strategies. However,
the cost is not reduced by as much if concerns about tipping points rule out using late-century
negative emission strategies to temporarily overshoot the CO2 target earlier in the century.

1 Introduction

Business-as-usual emission paths rapidly increase carbon dioxide (CO2) concentrations from their
current level of around 390 ppm, but climatic risks are increasingly seen as justifying CO2 targets
between 350 ppm and 450 ppm. While major emitters have advocated 2◦C temperature targets
that may require end-of-century CO2 concentrations towards the low end of that range (Mein-
shausen et al., 2009), even aggressive abatement would not hold CO2 concentrations below 400
ppm within the century. This dilemma has spurred recent interest in additional ways of manag-
ing temperature outcomes (Lenton and Vaughan, 2009; Keith, 2009; Blackstock and Long, 2010;
Kintisch, 2010). First, geoengineering techniques might reduce the temperature increase result-
ing from a CO2 emission path by, for instance, reflecting more incoming solar radiation back into
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†International Institute of Applied Systems Analysis, Laxenburg, Austria
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space. Second, large-scale use of negative emission technologies (NETs) can remove previously
emitted atmospheric CO2 and, if combined with aggressive emission reductions, might eventually
return concentrations to safer levels. Two leading examples of NETs are air capture facilities that
directly remove CO2 from ambient air via chemical reactions and biomass-fired electricity genera-
tors that use carbon capture and storage to sequester their post-combustion CO2.1 By offering an
alternative mitigation route, possible large-scale use of these technologies introduces flexibility into
the quantity of cumulative gross emissions consistent with a given CO2 target.

We model climate policy portfolios with options to reduce emissions, to directly fund research
and development (R&D) into low-carbon technologies, and to deploy NETs. The goal is to assess
how the presence of different policy options might affect optimal emission paths and policy costs.
Previous analyses of optimal policy portfolios have often focused on shorter-run technological change
and have not included negative emission options (e.g., Fischer and Newell, 2008), and analyses that
considered NETs did not embed them in a setting with R&D options. Keith et al. (2006) used an
integrated assessment model to explore how possible air capture of CO2 affects climate strategies
motivated by the possibility of abrupt climate change. They found that the future availability
of air capture could reduce near-term abatement efforts but increase net long-term abatement,
potentially returning atmospheric CO2 concentrations to pre-industrial levels within 200 years.
Azar et al. (2006) and Azar et al. (2010) found that bioenergy with carbon capture and storage can
be quite valuable in enabling more ambitious CO2 targets (such as 350 ppm) but is less valuable if
CO2 targets are closer to 450 ppm. Our model has less technological detail but more policy options,
thereby providing insight into how NETs may influence climate policy portfolios.

We explore how NETs may influence the policy portfolio that meets an exogenous CO2 con-
straint at the least expected cost. The CO2 constraint is fixed and known in a given model run, but
technological change depends stochastically on previous abatement and R&D funding and policy
choices can respond to observed technological change. We first describe the numerical model for
optimally selecting a climate policy portfolio in each of three periods over the 21st century. We
then present the results of solving it with stochastic dynamic programming for several parameteri-
zations and constraints. The results illustrate the implications of future negative emission options
for optimal near-term abatement and R&D efforts and for the cost of policy portfolios. They also
demonstrate how concerns about threshold effects from temporarily high CO2 levels might affect
the value and timing of NET deployment.

2 Model of policy portfolio optimization

We model a global decision-maker planning abatement, R&D funding, and NET deployment over
the 21st century. Combining several types of policy options in one model enables interactions that
might not be apparent otherwise. The decision-maker minimizes the present expected cost of her
planned policies under the constraint that net cumulative emissions end up below a predetermined
level, and her plans are contingent on low-carbon technological outcomes drawn from probability
distributions determined by R&D funding and by abatement. In reality, global climate policy

1The captured CO2 would be moved to geological sequestration absent another use or form of storage (e.g.,
Stephens and Keith, 2008). Other negative emission strategies include methods that use biological activity to sequester
atmospheric CO2 (Read, 2009; Woodward et al., 2009), perhaps by applying biochar to soils (Lehmann, 2007), sending
crop residues to the deep ocean (Strand and Benford, 2009), or fertilizing swathes of ocean to promote plankton blooms
(Smetacek and Naqvi, 2008; Strong et al., 2009).
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Table 1: Key to notation for decision variables and important parameters

Symbol Units Description

Decision variables

µt
Abated emissions
BAU emissions Abatement

κt Gt CO2 Negative emission technology (NET) deployment

ᾱt
Reduction in abatement cost

Initial abatement cost Technology target selected by public R&D into
carbon-free technologies

γ̄t
Reduction in non-abated emissions

Initial abatement cost Technology target selected by public R&D into emis-
sion intensity technologies

φ̄t
Reduction in NETs’ cost

Initial NETs’ cost Technology target selected by public R&D into NETs

Parameters

et Gt CO2 Business-as-usual (BAU) emissions
e∗ Gt CO2 Maximum cumulative emissions
S – Set of periods in which the cumulative emission con-

straint applies
αH , γH , φH Fraction (as above) Maximal possible R&D outcomes
αt, γt, φt Fraction (as above) Realized R&D outcomes
pα, pγ , pφ – Probability of missing the R&D target
να, νγ Fraction (as above) Effectiveness of abatement at inducing technological

change

emerges from a game played among many decision-makers with complex objectives, but the case
with a single decision-maker can provide a benchmark for establishing and assessing climate policies.

The objective is to select a sequence of abatement policies {µt}3t=1, NET deployment levels
{κt}3t=1, carbon-free public R&D targets {ᾱt}3t=1, emission intensity public R&D targets {γ̄t}3t=1,
and NET public R&D targets {φ̄t}3t=1 so as to minimize discounted expected costs under a constraint
e∗ on cumulative CO2 emissions (see Table 1 for a key to the notation):

min
{µ,κ,ᾱ,γ̄,φ̄}3t=1

3∑
t=1

β20(t−1)

[
µtetĉ(µt, αt, γt) + f(κt, φt) + g

( ᾱt
αH

)
+ h

(
γ̄t
γH

)
+ j

(
φ̄t
φH

)]
(1)

subject to
s∑
t=1

(1− µt)et − κt ≤ e∗, ∀s ∈ S (2)

The periods correspond to 2010-2029, 2030-2049, and 2050-2099, which roughly match the near-
term, intermediate-term, and long-term periods for which CO2 emission goals are often discussed.
Scenarios vary the planner’s access to certain types of policies by varying the possible levels that
each decision variable may take (Table 2). µt gives the fraction of business-as-usual (BAU) emissions
et abated in period t, and κt gives the quantity (Gt CO2) of NETs deployed. Carbon-free R&D can
reduce the cost of abatement by a fraction αt, which is most valuable at greater levels of abatement,
and emission intensity R&D can reduce the non-abated emissions by a fraction γt, which is most
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Table 2: Policy options available in each scenario. Also, the cumulative CO2 constraints applied
to the option scenarios. See Table 1 for a key to the notation.

Decision variables Parameters

{µ}3t=1 {κ}3t=1 {ᾱ, γ̄, φ̄}3t=1
a S e∗ b

Policy environment

Only abatement
{

0, 1
4 ,

1
2 ,

3
4 , 1
}

0 0 {3}

+R&D
{

0, 1
4 ,

1
2 ,

3
4 , 1
}

0
{

0, y
H

4 ,
yH

2 ,
3yH

4 , yH
}

{3}

+NETs c
{

0, 1
4 ,

1
2 ,

3
4 , 1
} {

0, e310 ,
e3
4 ,

e3
2 , e3

} {
0, y

H

4 ,
yH

2 ,
3yH

4 , yH
}

{3}

+Strict threshold
{

0, 1
4 ,

1
2 ,

3
4 , 1
} {

0, e310 ,
e3
4 ,

e3
2 , e3

} {
0, y

H

4 ,
yH

2 ,
3yH

4 , yH
}
{1, 2, 3}

Constraint on CO2

390 ppm 88

435 ppm 880

550 ppm 2900

a Values shown use y as a stand-in for the variable of interest. y should be
replaced by α, γ, and φ as appropriate.
b Gt CO2
c Negative emission technologies

valuable at lower levels of abatement (Baker and Adu-Bonnah, 2008). R&D into NETs can reduce
the cost of deploying NETs by a fraction φt. The average cost of abatement (ĉ(·)) depends on
the fraction of BAU emissions abated (µt) and on the outcomes of previous R&D into carbon-free
technologies (αt) and emission intensity technologies (γt). The cost of NETs (f(·)) depends on the
level of deployment (κt) and on the outcome of past R&D efforts (φt). R&D funding (g(·), h(·),
and j(·)) is determined by the chosen public R&D targets, and the total R&D target in a period is
determined by the public R&D target and by abatement policies’ induced technological change (see
appendix). The discount factor β converts costs from their value at the beginning of the period in
which they are incurred to their value in the prior year.

All abatement, R&D, and NET deployment is motivated by the cumulative CO2 emission
constraint e∗. This constraint can be interpreted in terms of CO2 concentrations by assuming a
constant airborne fraction of 0.45, no further stock decay, and an initial concentration of 385 ppm.
We model three values for e∗ (Table 2): 88 Gt CO2 (390 ppm), 880 Gt CO2 (435 ppm), and 2900
Gt CO2 (550 ppm). The 550 ppm constraint may imply a 90% chance of keeping temperature
change below 4◦C, the 435 ppm constraint may correspond to requiring a 95% chance of keeping
temperature change below 4◦C, and the 390 ppm constraint may correspond to requiring a 90%
chance of keeping temperature change below 2◦C (Lemoine, 2010). BAU emissions come from
scenario A2r in the International Institute for Applied System Analysis (IIASA) GGI Scenario
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Database (see also Riahi et al., 2007).2 Summing over each period’s years yields et in Gt CO2:

e1 = 750, e2 = 1150, e3 = 4500

The BAU path produces CO2 concentrations of 428 ppm in 2030, 493 ppm in 2050, and 749 ppm
in 2100.3

Recent work has argued that 21st century cumulative emissions are a primary determinant
of 21st century temperature change (Allen et al., 2009; Matthews et al., 2009). We model this
viewpoint with S = {3}. However, using NETs to temporarily overshoot a cumulative emission
constraint may increase concerns about causing additional irreversible changes or crossing additional
tipping points (O’Neill and Oppenheimer, 2004; Lenton et al., 2008). One set of model runs
represents these tipping point concerns by constraining cumulative emissions at the end of each
time period with S = {1, 2, 3} (Table 2).

The appendix describes the three-point probability distributions that determine the technol-
ogy outcomes (αt, γt, and φt) that apply to period t. It also describes how abatement induces
technological change and defines the cost functions for abatement, NET deployment, and public
R&D targets. We solve the model via backward induction for 15 reasonable parameterizations (see
table in appendix), each run under 9 combinations of the constraints on cumulative emissions and
available policy options (Table 2). The goal is to assess the robustness of optimal portfolios and
the crucial parameters for determining those portfolios. Each model run yields the optimal policy
portfolio in each period conditional on previous technological outcomes and on previous abatement
and NET policies. Comparing model runs reveals the importance of R&D and negative emission
options, of the CO2 constraint, and of other key parameters.

3 Results: Portfolio cost, robust actions, and critical parameters

Tighter climate constraints require more expensive policy portfolios, but the relative cost of those
portfolios depends strongly on the available policy options (Figure 1). R&D options provide the
greatest cost reductions for weaker CO2 constraints while NETs provide the greatest cost reduc-
tions for stricter constraints. R&D options provide the greatest percentage cost reductions for the
weaker CO2 constraints because these constraints permit greater flexibility in the timing of abate-
ment and so allow abatement to be adjusted to take advantage of R&D outcomes. Including options
to undertake R&D reduces the expected cost of meeting the 390 ppm constraint by almost 25%,
reduces the expected cost of meeting the 435 ppm constraint by 55%, and reduces the expected
cost of meeting the 550 ppm constraint by around 65%. In contrast, NETs provide the greatest
expected cost reductions for the strictest CO2 constraints because requiring greater emission reduc-
tions increases both the magnitude of NET deployment and the savings from replacing abatement.
Including options to deploy NETs reduces the expected cost of the 390 ppm constraint by almost
a further 80%, reduces the expected cost of the 435 ppm constraint by a further 35%, and does not
further reduce the expected cost of the 550 ppm constraint. With NETs, the policy portfolio for
the 390 ppm constraint costs about as much as the portfolio with R&D options for the 435 ppm
constraint and about double the abatement-only portfolio for the 550 ppm constraint; however,

2Available at: http://www.iiasa.ac.at/Research/GGI/DB/
3Experiments using the lower BAU emissions from scenario B2 did not produce noteworthy differences. The

difference between assumed BAU emission paths can represent different assumptions about population growth, the
distribution of worldwide economic growth, future consumption habits, and BAU low-carbon technology adoption.
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Figure 1: The present expected cost of the optimal policy portfolio in the base case scenarios. Costs
are given as multiples of the cost in the 435 ppm scenario with abatement as the only policy option.

concerns about threshold effects would erode some cost savings, making the full portfolio for the
390 ppm constraint look more expensive than even the abatement-only portfolio for the 435 ppm
constraint.

The presence of R&D and NET options can affect not just the cost of the policy portfolio but
also the optimal emission path. The lines with circles in Figure 2 show the optimal emission path
if the only policy option is to undertake abatement. The lines with the squares show the BAU
emission path, which is scenario-independent. Each solid line represents the optimal gross emission
path (before subtracting NETs’ effects) in the modeled parameterizations, with the thickness of
a line proportional to the number of represented parameterizations. Comparing the solid lines to
the one with circles shows how including options changes the emission path relative to a case in
which the only policy option is for abatement, comparing solid lines across columns shows the effect
on optimal emissions of including additional policy options or climate threshold constraints, and
comparing solid lines across rows shows the effect of the CO2 constraint on optimal emissions.

If technology policies should be the primary component of near-term climate policy (as argued
by Sandén and Azar (2005) and Montgomery and Smith (2007)), then including the option to
undertake public R&D should shift abatement from earlier periods to later ones. Instead, the
left column shows that this model’s planned abatement paths are relatively insensitive to the
availability of public R&D options (even though those options are exercised and reduce portfolio
costs). In contrast, comparing the left column with the middle column shows that NET options
do affect optimal emission paths: with the 435 ppm CO2 constraint (middle row), making NETs
available allows more smoothing of emissions over time by offsetting the most expensive late-century
abatement, and with the 390 ppm CO2 constraint (bottom row), NETs’ availability decreases both
near-term and long-term abatement by enabling future NET deployment to offset increased gross
emissions.4 Finally, comparing the right column with the middle column shows the influence of

4The quantities of NETs deployed are within the range of estimates of underground global CO2 storage capacity
(Benson et al., 2005), and NETs may not involve underground storage. However, captured CO2 from fossil fuel plants
may compete with captured CO2 from negative emission facilities for end uses or storage capacity.
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concerns about climate tipping points on optimal emission paths. Now the scenarios with the 390
ppm constraint (bottom row) increase both abatement and NET deployment in the first period so
that CO2 concentrations do not temporarily overshoot the target value. While NET options can
reduce near-term optimal abatement, the magnitude of this effect is sensitive to concerns about
crossing climate thresholds.

In a higher-level model such as the present one, the details of the control variables are less
important than the big-picture story they represent. In Figure 3, we group cost-minimizing policy
outcomes according to whether they produce at least 25% abatement in the first period, at least 50%
abatement in the second period, 100% abatement in the third period, public funding for carbon-
free R&D in any period, public funding for emission intensity R&D in any period, and deployment
of NETs in any period. Interestingly, the probability of undertaking these broad categories of
actions splits into probabilities near 1 and near 0. This indicates that big-picture actions are not
conditional on technological outcomes, instead being driven mostly by the CO2 constraint. The type
of R&D funded depends on how much it may contribute to the broad categories of actions favored
by a given combination of CO2 constraint and available policy options: carbon-free public R&D
and emission intensity public R&D often substitute for each other, with expectations of future
abatement largely driving the choice between the two types of technology forcing. In a subtle
difference from the conclusions of Gerlagh et al. (2009) and of the review by Baker and Shittu
(2008), near-term abatement and public R&D funding do not clearly substitute for each other
across scenarios. Rather, their primary determinants can push them in the same direction: near-
term abatement is primarily determined by whether it is needed to keep future CO2 concentrations
below the constraint, and carbon-free public R&D is primarily determined by the likelihood of
future deep abatement. These two driving factors often move together, and both are affected above
all by the availability of NETs and the stringency of the CO2 constraint.

Some policy choices are not sensitive to climate targets or to parameters’ values. For example,
the optimal portfolio almost always abates at least 50% of period 2 BAU emissions and at least
75% of period 3 BAU emissions (Figures 2 and 3). Furthermore, public funding for R&D is rarely
above half of the maximal level,5 and, unless the CO2 constraint is a strict threshold or there is
no discounting, NETs are almost never used before period 3 or without previous NET R&D. A
robust course of action therefore plans for deep abatement from 2030-2100, includes public R&D
support that is significant but not a substitute for early abatement, and deploys NETs only after
deep abatement and in conjunction with ongoing deep abatement.

Knowing a few specific parameters provides many of the remaining details about the optimal
course of action, regardless of other parameters’ values. First, as already discussed, one of the
most important parameters is the presence of options to deploy NETs and undertake associated
R&D. The non-existence of these options is equivalent to assigning them some sufficiently high cost
or to judging them too risky to consider. The possibility of NET use allows the precise level of
period 3 abatement (as opposed to the broad categories in Figure 3) under the two more stringent
CO2 constraints to be contingent on abatement R&D outcomes and on NET R&D outcomes. For
instance, if abatement R&D is not successful while NET R&D is successful, NET deployment can be
scaled up and abatement can be scaled down. Because they reduce the probability of undertaking

5The main exceptions with public R&D commonly at 75% of the maximal level are: period 2 carbon-free R&D
in scenarios with the 435 ppm CO2 constraint and unavailable NETs, period 2 emission intensity R&D in scenarios
with NET options and cheap R&D or cheap abatement, and period 2 NET R&D in scenarios with the 435 or 390
ppm CO2 constraints.
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R&D + NETs + Strict Threshold

550
ppm

435
ppm

390
ppm

Figure 2: The planned gross emission paths (before subtracting NETs’ removed CO2) under the
three year 2100 CO2 constraints (rows) with different sets of available policy options (columns)
(Table 2). Each chart shows the business-as-usual path (squares) and the base case planned path
if the only available options are for abatement (circles). Each solid line represents the planned
actions in the presence of options beyond abatement, where a planned action is the most likely
action conditional on the previous most likely actions.
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(a) NETs unavailable

(b) NETs available

Figure 3: The probability of undertaking a type of action in each parameterization.. For each
category of action, the three columns represent the 550 ppm CO2 constraint (left), the 435 ppm CO2

constraint (middle), and the 390 ppm CO2 constraint (right). Each probability is rounded to the
nearest multiple of 0.1, and each circle has an area proportional to the number of parameterizations
producing that rounded probability.
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the deepest levels of period 2 and period 3 abatement, available NETs can reduce the incentive
to invest in carbon-free R&D and can increase the incentive to invest in emission intensity R&D.
NETs and emission intensity R&D thus act as complements, both substituting for carbon-free R&D
and for abatement.

The CO2 constraint is another important parameter.6 In cases without available NETs, one
can almost perfectly predict each period’s abatement if one knows the CO2 constraint and nothing
else about the parameterization under consideration. The availability of NETs tends to reduce
the importance of the CO2 constraint for the determination of abatement levels and abatement
R&D decisions because NETs can make the more stringent constraints’ abatement goals look more
like those needed for less stringent constraints. In a world without NETs, beliefs about climate
change and tolerance for climate change risks almost completely determine immediate abatement
and R&D decisions, and in a world with NETs, these beliefs and risk tolerance determine whether
NETs are relevant.

4 Discussion: Policy implications

As shown by the emission paths in Figure 2 and by the probability of future deep abatement plotted
in Figure 3, cost-minimizing climate policy portfolios emphasize abatement of 50-100% by 2050 in
nearly all parameterizations and under almost any combination of CO2 targets and available policy
options. These levels of medium-term abatement are consistent with the most ambitious goals
announced by major emitters. The optimal level of near-term abatement depends on CO2 targets
and on judgments about NETs’ cost, risk, and availability, but it does not depend on the availability
of policies that aim to directly spur clean energy R&D. A near-term target of at least 25% abatement
by 2030 seems warranted as a means of keeping future options open, because parameterizations that
produce less abatement usually use a riskier 550 ppm CO2 constraint. If future risk preferences are
uncertain, then less abatement could foreclose future risk preferences from being met without large-
scale deployment of NETs (and even these would still leave vulnerability to future concerns about
tipping points). Major emitters’ 2◦C temperature change targets may require either greater-than-
announced near-term abatement beyond 50% of BAU emissions or plans for prodigious deployment
of NETs later in the century.

While the availability of technology policies generally does not affect abatement paths, these
policies can greatly reduce the cost of the optimal policy portfolio (Figure 1). Technology policies
should emphasize carbon-free technologies if NETs are not thought to be viable and if preferences
are for less temperature change risk, and technology policies should emphasize emission intensity
technologies if NETs are expected to play a large role in the latter half of the century. NETs have
significant value because they could bring the cost of more ambitious CO2 targets nearer that of
less ambitious targets, not only saving money but also increasing the appeal of more ambitious
climate targets.

Three types of research could improve the model’s applicability. First, near-term interdisci-
plinary research into the possible costs, scale, and land use implications of NETs could not only
improve the current model but could enable future policy decisions to respond to the new infor-
mation about NETs. In fact, R&D to reduce NETs’ cost from the parameterized estimates almost
always precedes deployment of NETs in the current model, though it does not appear to be neces-

6In addition, variations in the effectiveness of abatement at inducing technological change account for some
variation in the level of public R&D funding.
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sary for such deployment. Second, different functions for probabilistically connecting R&D support
and abatement policies to technological outcomes could provide more realistic representations of
technological change. However, whether or not it is empirically derived, any such function will
remain subject to substantial structural uncertainty as it is applied out-of-sample to future energy
R&D. This observation leads to the third important research path: the portfolio selection model
might produce stronger and more detailed policy implications if, beyond its current consideration
of parametric uncertainty, it also accounted for structural uncertainty about functional forms and
probability distributions. This kind of sensitivity analysis may require a simpler model that runs
faster, but it could provide a more complete depiction of the connection between policy outcomes
and beliefs about factors governing abatement cost and technological change.

Any climate policy portfolio implicitly places bets on the climatic and economic systems, but
some portfolios imply more specific bets than do others and impose greater costs if their bets turn
out poorly. We have taken a step towards representing the policy implications of different types of
bets and towards determining which policies cohere with the broadest range of bets. We find that
deep intermediate- and long-term abatement is robust to the scenarios considered here, but near-
term abatement and R&D funding decisions depend on CO2 goals and on the anticipated availability
of NETs. NETs affect optimal abatement paths if the CO2 target is near or below present CO2

concentrations. In that case, these options can greatly reduce the cost of the policy portfolio, and
they shift some near-term funding for abatement and for radical carbon-free R&D into funding for
R&D targeted towards incremental emission intensity technologies and towards reducing the cost
of NETs. Future NET deployment can greatly facilitate the achievement of long-term CO2 targets;
however, planning for heavy reliance on NETs can introduce its own technological risks and may
not address concerns about near-term climate thresholds and other irreversible changes.

5 Appendix: Model parameterizations

This appendix describes the parameterization of the portfolio selection model. It describes the
probability distributions for technological outcomes, the functional representation of induced tech-
nological change (ITC), and the cost functions used in the objective function. First, the state
variables αt, γt, and φt record the technology outcomes that apply to period t (Table 1). These
outcomes are each drawn from a three-point probability distribution similar to the one in Baker and
Adu-Bonnah (2008). The main differences are that here the distribution is anchored by the previ-
ous period’s realized outcomes and that here the targeted level of technology depends not just on
the previous period’s R&D funding but also on its abatement policy. Abatement can induce tech-
nological change via functions ITCα : µt → [0, αH ] for carbon-free R&D and ITCγ : µt → [0, γH ]
for emission intensity R&D. The technology target for a given period comes from summing the
targets produced by abatement and by public R&D, provided the total target does not exceed the
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exogenous maximal level:7

Pr[αt = αt−1] = pα(1−min[ᾱt−1 + ITCα(µt−1), αH ]) (3)

Pr[αt = min(ᾱt−1 + ITCα(µt−1), αH)] = 1− pα (4)

Pr[αt = αH ] = pα(min[ᾱt−1 + ITCα(µt−1), αH ]) (5)

Pr[γt = γt−1] = pγ(1−min[γ̄t−1 + ITCγ(µt−1), γH ]) (6)

Pr[γt = min(γ̄t−1 + ITCγ(µt−1), γH)] = 1− pγ (7)

Pr[γt = γH ] = pγ(min[γ̄t−1 + ITCγ(µt−1), γH ]) (8)

Pr[φt = φt−1] = pφ(1− φ̄t−1) (9)

Pr[φt = φ̄t−1] = 1− pφ (10)

Pr[φt = φH ] = pφφ̄t−1 (11)

The ITC functions allow us to see how beliefs about the effectiveness of abatement at producing
each type of technological change may affect the results. Unfortunately, the relationship between
ITC and public R&D cannot be specified using empirical results (Pizer and Popp, 2008). Instead,
we specify it by translating the fraction of emissions abated into the equivalent of some fraction
of maximal R&D funding. First, 0% abatement does not affect the R&D targets. Second, we
require perfect ITC to translate a given percentage abatement into R&D targets that are the
same percentage of their maximal levels. This implies that µ = ITCα(µ)/αH = ITCγ(µ)/γH

under perfect ITC. A parameter ν controls the effectiveness of ITC and proxies for the severity
of innovation market failures. If ν = 0, then ITC for that technology is “perfect,” and if ν > 0,
then ITC for that technology is imperfect in the sense that a percentage of full abatement does not
produce an equivalent percentage of the maximal R&D target:

ITCα(µt) = max(0, (µt − να)αH) (12)

ITCγ(µt) = max(0, (µt − νγ)γH) (13)

This representation enables us to vary the effectiveness of ITC across scenarios and also to make
ITC more effective within a given scenario for near-term emission intensity technologies than for
longer-term carbon-free technologies. The base case parameterization assumes that ITC is stronger
for near-term emission intensity technologies than for longer-term carbon-free technologies.

It remains to define cost functions for abatement, NET deployment, and public R&D targets.
First, the cost of abatement depends on the level of abatement and on available technologies.
ĉ(µt, αt, γt) is the average cost in the base case of abating fraction µt of BAU emissions et given
R&D outcomes αt and γt:

ĉ(µt, αt, γt) = min

[
zt
µt
ĉ (zt, 0, 0) , (1− αt)ĉ(µt, 0, 0)

]
(14)

where zt ≡ max [(µt − γt)/(1− γt), 0] as in Baker and Adu-Bonnah (2008). In the low-cost scenario,
we denote the average abatement cost by d̂(µt, αt, γt), defined analogously to ĉ(·). Zero abatement
costs nothing (c(0, αt, γt) = 0), and the normalization is ĉ(1, 0, 0) = 100. The range of ĉ(·) is

7In the case that ᾱt−1+ITCα(µt−1) > αH , we have Pr[αt = αH ] = (1−pα)+pαα
H , implying that either αt = αH

or αt = αt−1. An analogous caveat holds for the probability distribution for γ.
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therefore [0,100]. The two terms inside the minimization operator give the effect of emission inten-
sity technologies and carbon-free technologies, and the use of the minimization operator assumes
that the cheapest type of technology is used at each level of abatement. Hoogwijk et al. (2008)
reported the carbon price yielding aggregate global abatement of 25% to be between $10/tCO2

and $40/tCO2 and the carbon price yielding aggregate global abatement of 50% to be between
$60/tCO2 and some level well above $100/tCO2. We develop the base case and the low-cost av-
erage cost representations by assuming that marginal costs follow a geometric progression at the
discretized points and increase linearly between those points.8 This yields ($/tCO2):

Base case: ĉ(0.25, 0, 0) = 2.4, ĉ(0.50, 0, 0) = 8.4, ĉ(0.75, 0, 0) = 28, ĉ(1, 0, 0) = 100

Low-cost: d̂(0.25, 0, 0) = 2.4, d̂(0.50, 0, 0) = 6.0, d̂(0.75, 0, 0) = 12, d̂(1, 0, 0) = 27

When zt falls between the above discretization for µ, we define the cost function by assuming
average cost is linear between these discretized points.

A second type of cost function applies to deployment κt of NETs. We represent NETs as having
constant marginal cost, which is determined by adjusting the base case average cost of an exogenous
level x of period 1 abatement for the outcome φt of NET R&D:

f(κt, φt) = κt(1− φt) ĉ(x, 0, 0) (15)

x = 0.75 corresponds to a cost of $115/tCO2, which is near the low end of recent estimates, and
x = 1 corresponds to a cost of $415/tCO2, which is above many recent estimates (e.g., Rhodes and
Keith, 2005; Keith et al., 2006; Uddin and Barreto, 2007; Stolaroff et al., 2008; Keith, 2009; Pielke
Jr., 2009).

Finally, a third type of cost function determines how much R&D funding it takes to select a
technology target. We assume that the funding that it takes to aim for the chosen public target
depends not on the level of the target but on the percentage of the maximal target that it represents.
We treat the cost of reaching a percentage of the maximal level of R&D as being an exogenous
fraction y of the base case cost for abating the same percentage of period 1 emissions:

g
( ᾱt
αH

)
= yg ∗ ĉ

( ᾱt
αH

, 0, 0
)
∗ ᾱt
αH
∗ e1 (16)

h

(
γ̄t
γH

)
= yh ∗ g

(
γ̄t
γH

)
(17)

j

(
φ̄t
φH

)
=
yj
yg
∗ g
(
φ̄t
φH

)
(18)

We represent carbon-free R&D costs in terms of average abatement costs because these provide a
natural reference point while satisfying the desired property of decreasing returns, and we define
the cost of emission intensity R&D as some fraction yh of the cost of carbon-free R&D.

The parameters in these functions and probability distributions are chosen so as to represent
seemingly reasonable values, and 14 alternatives then vary one or more of these parameters to

8More specifically, we develop the two marginal cost representations by assuming that: the carbon prices reported
in Hoogwijk et al. (2008) represent the marginal cost of abatement; abatement of 25% has a marginal cost of
$20/tCO2; abatement of 50% makes marginal costs either quintuple (base case) to $100/tCO2 or triple (low-cost
case) to $60/tCO2; higher levels of abatement follow the same geometric progression; and the marginal cost of
abating a given fraction of contemporary emissions is unaffected by previous periods’ abatement except through
modeled technological change.
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Table 3: The 15 parameter scenarios explored with the numerical model. We run each scenario
with each possible combination of the three CO2 constraints, NET availability, and climate tipping
point concerns (Table 2).

Scenario Parameter values Base case values

Base case – –

Cheap abatement d̂(·) ĉ(·)
Cheap R&D yg = yj = 0.25 yg = yj = 0.50
Cheap emission intensity R&D yh = 0.50 yh = 1

Cheap abatement, R&D, and NETs d̂(·), x = 0.75, yg = yj = 0.25 ĉ(·), x = 1, yg = yj = 0.50
Limited R&D scope αH = γH = φH = 0.25 αH = γH = φH = 0.75
Greater R&D scope αH = γH = φH = 0.95 αH = γH = φH = 0.75
Limited R&D control pα = pγ = pφ = 0.75 pα = pγ = pφ = 0.25
High discounting β = 0.90 β = 0.95
No discounting β = 1 β = 0.95
Perfect ITC να = νγ = 0 να = 0.50, νγ = 0.25
Better ITC for both technologies να = 0.25, νγ = 0 να = 0.50, νγ = 0.25
Better ITC for intensity technology νγ = 0 νγ = 0.25
No ITC να = νγ = 100 να = 0.50, νγ = 0.25
Cheap NETs x = 0.75 x = 1

reflect different beliefs about technological change, cost functions, or discounting (Table 3). If
all parameterizations produce similar results, then we have more confidence that the results are
robust to specific values. A more thorough assessment of robustness should also include structural
variations in, for instance, the form of the cost functions, of the ITC functions converting abatement
into R&D targets, and of the probability distribution for technological change.
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