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[1] If climate‐carbon feedbacks are positive, then warming causes changes in carbon
dioxide (CO2) sources and sinks that increase CO2 concentrations and create further
warming. Previous work using paleoclimatic reconstructions has not disentangled the
causal effect of interest from the effects of reverse causality and autocorrelation. The
response of CO2 to variations in orbital forcing over the past 800,000 years suggests that
millennial‐scale climate‐carbon feedbacks are significantly positive and significantly
greater than century‐scale feedbacks. Feedbacks are also significantly greater on 100 year
time scales than on 50 year time scales over the past 1500 years. Posterior probability
distributions implied by coupled models’ predictions and by these paleoclimatic results
give a mean of 0.03 for the nondimensional climate‐carbon feedback factor and a 90%
chance of its being between −0.04 and 0.09. The 70% chance that climate‐carbon
feedbacks are positive implies that temperature change projections tend to underestimate
an emission path’s consequences if they do not allow the carbon cycle to respond to
changing temperatures.
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1. Introduction

[2] Climate‐carbon (or carbon cycle) feedbacks control
how carbon dioxide (CO2) concentrations respond to
changing temperatures [Friedlingstein et al., 2006; Gregory
et al., 2009]. Positive feedbacks indicate that increased
surface temperatures cause changes in CO2 sources and
sinks that in turn further increase surface temperatures [Cox
et al., 2000; Heimann and Reichstein, 2008]. Because other
climate change feedbacks are thought to be positive on net
[Bony et al., 2006; Soden et al., 2008], and because feed-
backs add linearly but impact temperature nonlinearly [Torn
and Harte, 2006; Roe and Baker, 2007; Roe, 2009], con-
straining the range of climate‐carbon feedbacks is important
for constraining temperature change projections and for
climate risk assessments [Plattner et al., 2008; Huntingford
et al., 2009]. However, while models that couple the carbon
cycle and the climate system can provide some insight into
the possible magnitude of these feedbacks, the number and
complexity of the interlinked processes restrict the amount
of information that can be gleaned from models alone
[Lemoine, 2010].
[3] Estimates from paleoclimatic data can provide an

alternate source of information about the scale of feedbacks
that may operate under anthropogenic warming. While dif-
ferences in boundary conditions and in the type of forcing
mean that paleoclimatic data are unlikely to correctly

describe the Earth system’s response to ongoing anthropo-
genic greenhouse gas forcing, their biases in the anthropo-
genic application might be largely uncorrelated with those
impacting coupled models’ predictions [Lemoine, 2010].
Paleoclimatic estimates can therefore complement models’
predictions in the construction of a probability distribution
for climate‐carbon feedbacks.
[4] This paper estimates climate‐carbon feedback strength

over past ice age cycles and over the past two millennia. It
uses changes in insolation due to orbital variations to
identify the response of atmospheric CO2 concentrations to
changes in temperature over the previous 800,000 years.
The results indicate that climate‐carbon feedbacks were
probably positive over past ice ages and over the past two
millennia. The magnitude depends on the time scale of
interest but, over millennial time scales, is comparable to
coupled models’ predictions of the carbon cycle’s response
to anthropogenic greenhouse gas forcing. The temperature
change produced by a given emission path is therefore
probably greater than suggested by climate sensitivity
metrics that do not allow the carbon cycle to respond to
changing temperatures.

2. Assessing Feedback Strength

[5] The equilibrium temperature change DT due to a
change in radiative forcing can be represented as

DT ¼ �0DRf

1�PK
k¼1 ck�0

¼ �0DRf

1� F
; ð1Þ

where l0 is the temperature change per unit of radiative
forcing in the reference system upon which feedbacks
operate, DRf is the exogenous change in radiative forcing
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produced by increased greenhouse gas concentrations, and
nondimensional fk ≡ ckl0 gives the influence of feedback
process k [Roe, 2009]. This representation assumes that
feedback processes are linear over the relevant temperature
range and are defined so that they interact only through their
effects on temperature. When positive, fk may be interpreted
as the fraction of total warming due to feedback process k.
[6] Each feedback factor fk can be decomposed into the

product of the total change in climate field ak due to a unit
change in temperature and the change in radiative forcing
due to a unit change in climate field ak when other climate
fields are held fixed [Roe, 2009]. In the case of climate‐
carbon feedbacks fcc affecting CO2 concentrations, this
gives

fcc � fk ¼ �0
@R

@ lnCO2

� �
�j;j6¼k

d lnCO2

dT

( )
; ð2Þ

where climate‐carbon feedbacks are feedback process k.
CO2 concentrations are represented by their log because
radiative forcing increases approximately linearly with the
log of CO2, yielding @R

@ lnCO2

� �
�j; j 6¼k

= 5.35 W m−2 (ln ppm)−1

[Ramaswamy et al., 2001, Table 6.2]. l0 is approximately
0.315 K (W m−2)−1 [Soden et al., 2008]. Estimating the
climate‐carbon feedback factor fcc therefore primarily
requires estimating y ≡ d ln CO2/dT, or the effect of a unit
of temperature change on CO2 concentrations. Coupled
climate‐carbon cycle models have predicted this term
[Friedlingstein et al., 2003, 2006; Cadule et al., 2009], but
these models provide limited information because they only
include a subset of known carbon cycle processes and are
vulnerable to the possibility of shared model biases [Luo,
2007; Tebaldi and Knutti, 2007; Lemoine, 2010].
[7] Paleoclimatic estimates can provide an important

additional source of information with biases largely inde-
pendent of models’ shared biases, but empirical estimation
is complicated by the degree to which Earth system com-
ponents are intertwined, by the incompleteness of climatic
records, and by the inability to run full‐scale controlled
experiments. Four studies have attempted to constrain
climate‐carbon feedbacks from temperature and CO2

reconstructions. Scheffer et al. [2006] considered the last
millennium’s Little Ice Age (LIA), and Torn and Harte
[2006] used the last 360,000 years as recorded by the
Vostok ice core. Frank et al. [2010] estimated the response
of CO2 to temperature for three time periods in the
past millennium. An ensemble of temperature and CO2

reconstructions produced a frequency distribution for y.
This distribution may be interpreted as a probability distri-
bution for y if one assumes that the reconstructions properly
sample the space of possible worlds. Finally, Cox and Jones
[2008] constrained climate‐carbon feedback strength by
determining which values are consistent with the output of
coupled climate‐carbon cycle models run using twentieth
century data, with the results of matching coupled models to
observed interannual variability, and with a LIA analysis
closely related to that of Scheffer et al. [2006].
[8] Crucially, these four studies rely on univariate regres-

sions of CO2 on temperature that may contain biases from
reverse causality and autocorrelation (Appendix A). A uni-

variate regression cannot disentangle whether high CO2

levels accompany high temperatures because higher CO2

causes higher temperatures, because higher temperatures
cause higher CO2, or because they are each being driven by,
for instance, previous periods’ CO2 and temperature.
Because feedback estimation is concerned with the response
of CO2 to an exogenous increase in temperature, it is
important that paleoclimatic studies isolate the response of
CO2 to temperature from the more general correlation esti-
mated by a univariate regression. The present study seeks to
isolate the causal effect of temperature on CO2 by looking at
the response of CO2 to variations in temperature that were
unlikely to be caused by variations in CO2.

3. Methods: Estimated Equations

[9] The present study estimates climate‐carbon feedbacks
over four time scales: millennia, centuries, 100 years, and
50 years. It seeks to generate estimates that are free of
simultaneous equations (or reverse causality) bias and
omitted variables bias. First, it aims to avoid simultaneous
equations bias by using orbital forcing as an instrument for
temperature over the longer time scales (Appendix A). A
good instrument is correlated with temperature but only
affects the coeval CO2 concentration through its effect on
temperature. In other words, using this instrument isolates a
“good” portion of the variation in temperature—a portion
that is believed not to be caused by changes in CO2—and
ignores the rest. A good instrument avoids the problem of
imputing the causal effect of temperature on CO2 from data that
actually reflects the greenhouse effect of CO2 on temperature.
[10] The key hypotheses for the validity of an orbital

forcing instrument are that: (1) changes in orbital forcing
cause changes in temperature but (2) do not affect CO2

levels except through their effect on temperature. If these
hypotheses hold, then we can replace the actual temperature
record with one predicted from orbital forcing data and
believe that any remaining correlation with the CO2 record
is due to the effect of temperature on CO2. The first
hypothesis is supported by the Milankovitch theory of gla-
cial cycles, according to which summer insolation in the
Northern Hemisphere’s high latitudes controls both hemi-
spheres’ temperature on millennial time scales [Milanković,
1941; Hays et al., 1976; Berger, 1992]. Variations in sum-
mer insolation might have this effect because nonlinearities
in the climate system can amplify the direct effect on ice
sheets and snow accumulation. Importantly for the choice of
which insolation time series to use, some have instead
argued that the true trigger for deglaciation is the timing of
spring insolation in the Northern Hemisphere [Hansen et al.,
2007] or that Antarctic temperatures are more tightly con-
trolled by the duration of the local (Southern Hemisphere)
summer [Huybers and Denton, 2008]. While the hypotheses
are difficult to distinguish empirically [Huybers, 2009] and
the true mechanism may be more complex [Wolff et al.,
2009], recent evidence does support a Northern Hemi-
sphere trigger for Antarctic temperatures [Kawamura et al.,
2007; Cheng et al., 2009]. Further, several recent studies
[Petit et al., 1999; Jouzel et al., 2007; Kawamura et al.,
2007] used high‐latitude summer solstice insolation in the
Northern Hemisphere as an indicator of orbital forcing, and
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ice core chronologies sometimes assume a linear response of
climate to orbital forcing, whether defined via mid‐June
insolation at northern high latitudes [Parrenin et al., 2004]
or via anticipated periodicity [Salamatin, 2000]. Therefore,
given that orbital forcing should affect temperature, the key
condition becomes the hypothesis that it does not directly
affect the CO2 concentration. Because orbital forcing affects
insolation the most at the poles and the least at the equator,
and because the primary effect at the poles is on snow and
ice melt (via temperature), orbital forcing’s effect on the
timing and spatial distribution of insolation may not be
directly critical for important carbon sources and sinks.
Variations in orbital forcing may in fact cause variations in
temperature without affecting CO2 concentrations except
through these variations in temperature.
[11] The second source of bias that univariate regressions

are exposed to is omitted variables bias produced by cor-
relation of time t temperature and CO2 with previous tem-
perature and CO2. If not accounted for, such correlation with
past climate states could induce correlation between time t
temperature and CO2 that univariate regressions include in
their coefficient estimates. However, this correlation
through previous climate states may not be the effect of
interest in a feedback application. The present study seeks to
minimize omitted variables bias by including lagged cov-
ariates in the regression. The estimated model assumes that
temperatures and concentrations at times earlier than those
included as covariates only affect the temperature and
concentration at time t through their effect on the included
covariates.
[12] The present study does not eliminate a final source of

bias. Measurement error in temperature data may be due to
errors in measurement of isotopes, in inferences about local
temperature from isotopes, in inferences about global tem-
perature from local temperature, and in the assignment of
relative dates to the recorded temperature and CO2. This
measurement error tends to push coefficient estimates
toward zero (Appendix A). Further, gas diffusion processes
mean that each CO2 observation actually has a distribution
of ages and an effective resolution of a few centuries
[Spahni et al., 2003], which tends to reduce the variation
useful for regression‐based estimates. The remaining errors
should therefore tend to bias the results toward finding no
effect of temperature on CO2.
[13] The orbital forcing specification estimates the fol-

lowing equation:

Ct ¼ �0 þ
X2
i¼0

�iþ1Tt�i þ �4Ct�1 þ �t; ð3Þ

where Ct is the log of the CO2 concentration at time t, Tt is
the temperature at time t, and t is in thousands of years. Ct−2
is not included as a covariate because CO2 concentrations
from 2000 years ago should only affect contemporary CO2

concentrations via their effect on CO2 concentrations and
temperature 1000 years ago. Orbital forcing (Ot) in W m−2

instruments for Tt via the following first‐stage regression:

Tt ¼ �0 þ �1Ot þ
X2
i¼1

�iþ1Tt�i þ �4Ct�1 þ �t : ð4Þ

Ot and Tt have a correlation coefficient of 0.18, so, as
required for valid use as an instrument, variation in orbital
forcing is connected to variation in temperature. The esti-
mated covariance matrix uses the Huber‐White estimator
that is robust to arbitrary heteroskedasticity. Importantly for
the applicability of the statistical methods used here, the
time series appear to be stationary (augmented Dickey‐
Fuller tests reject the unit root hypothesis at the a =
0.05 level), which means that the mean and covariance are
not changing over time. It is also important that the error
term �t not be serially correlated, because serial correlation
may mean that �t is correlated with Ct−1 via its correlation
with �t−1, which would violate the assumption of exogeneity
of the covariates. We test for such serial correlation in the
instrumental variable estimate by using a Cumby‐Huizinga
test, which fails to reject the null hypothesis of no serial
correlation at the a = 0.20 level. We therefore assume that �t
is not serially correlated and that Ct−1 is in fact exogenous
for �t.
[14] The resulting coefficients and covariance matrix

enable estimation of feedbacks over two time scales. The
feedback factor over a time scale of j time units is calculated
from equation (2) using

 �  j ¼
Xj

i¼0

Tt�i þ
Xj

k¼1

 j�kCt�k ; ð5Þ

where C and T variables represent their estimated coeffi-
cients and j ≥ 0. yj is defined recursively, and y0 is the
coefficient on Tt. Thus, b1 gives the effect of Tt on Ct, which
is here labeled the century‐scale response, and b1 + b2 +
b4b1 gives the effect on Ct of an increase in temperature at
time t − 1 that is maintained at time t, which is here labeled
the millennial response. Variance and covariance calcula-
tions use first‐order linear approximations for the yj−kCt−k
terms.
[15] The data are an 800 kyr temperature record from the

Antarctic EPICA Dome C core with the EDC3 age scale
[Jouzel et al., 2007], an 800 kyr composite CO2 record
drawn from that and other cores [Lüthi et al., 2008], and the
calculations of Berger [1978] for orbital forcing at 60°N
(Figure 1a). The similarity of this temperature record to
those of the Vostok and Dome F cores implies that it may be
indicative of general conditions over eastern Antarctica
[Jouzel et al., 2007], and models suggest that Antarctic
temperatures may track global temperatures [Masson‐
Delmotte et al., 2010]. Figure 2 shows how including
lagged variables as covariates alters the temperature‐CO2

relationship and how the instrument isolates a portion of the
variation in Tt.
[16] Estimating coefficients in several model specifica-

tions assesses the results’ robustness to some types of
specification error. In the base case and summer insolation
specifications, the temperature and CO2 data used are the
observations closest to the endpoint of each 1000 year
interval, while the averaged data specification uses the
average of the previous 1000 years’ observations. In the
base case and averaged data specifications, the orbital
forcing instrument is insolation in mid‐June, but the summer
insolation specification sums the insolation over June, July,
and August.
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[17] The orbital forcing regressions estimate feedback
strength over time scales of centuries or millennia, but it is
also of interest to nearer‐term climate projections to estimate
climate‐carbon feedbacks over shorter time scales. This
requires a denser dataset than is available from ice cores. We
therefore use composite temperature records from 500 A.D.
through 1700 A.D. [Mann et al., 2008] and the CO2 record
from the Law Dome ice core [MacFarling Meure et al.,
2006]. The CO2 record is made denser by first using
Friedman’s supersmoother algorithm under the assumption
that CO2 concentrations only change slowly and smoothly
over century‐scale timespans prior to 1700 A.D. Shape‐
preserving piecewise cubic interpolation then fills in values
for missing years (Figure 1b). With t on the order of decades
rather than in thousands of years, it is important to include
several lagged terms because more distant lags may now

affect time t variables directly [e.g., Schimel et al., 1996].
The estimated model for shorter‐term feedbacks is

DCt ¼
Xk
i¼0

�1þiDTt�i þ
Xk
j¼1

�1þkþjDCt�j þ �t; ð6Þ

where D indicates a first difference (soDCt = Ct − Ct−1) and
where k = 11 when the time step for t is 10 years while k = 5
when the time step for t is 25 years. Differencing the data
makes it stationary (augmented Dickey‐Fuller tests reject
the unit root hypothesis at the a = 0.10 level), and Durbin’s
alternative test, a standard test for serial correlation in
Ordinary Least Squares estimates, fails to reject the null
hypothesis of no serial correlation at the a = 0.50 level. We
calculate the effect of a 50 year and 100 year maintained
increase in temperature from equation (5) using the esti-
mated coefficients and heteroskedasticity–robust covariance
matrix.
[18] These subcentury time scale specifications do not

instrument for Tt for two reasons. First, simultaneous
equations bias should be small. This is because any unob-
served sources of variation in CO2 levels that appear
between time t − 1 and time t should be small and may not
have enough time to fully affect Tt. Second, despite signif-
icant first‐stage coefficients, weak instrument tests indicate
potential problems with the use of solar activity from
Steinhilber et al. [2009] and Delaygue and Bard [2010] as
an instrument for Tt. Even if simultaneous equations bias is
nonzero, it is probably sufficiently small that the ordinary
least squares estimate is preferable to estimation with a weak
instrument.

4. Results

[19] The orbital forcing specifications indicate that
expected millennial‐scale climate‐carbon feedbacks are
probably positive (p < 0.001), acting to amplify anthropo-
genic warming (Table 1). Their 95% confidence intervals
are in the range of 0.02 to 0.05 (Figure 3), which is com-
parable to the predictions of the coupled climate‐carbon
cycle models described by Friedlingstein et al. [2006].
However, in line with the anticipated effects of biases
introduced to previous work by reverse causality and
autocorrelation, this range is on the low end of previous
paleoclimatic estimates. Climate‐carbon feedbacks are
statistically greater over millennial time scales than over
time scales of centuries (p < 0.001), and for either 10 year
or 25 year time steps, climate‐carbon feedbacks are sta-
tistically greater over 100 year time scales than over
50 year time scales (p < 0.001). Each first‐stage regression
produces a coefficient on the orbital forcing instrument
that is significantly different from 0 (p < 0.001), and
heteroskedasticity–robust Kleibergen‐Paap F statistics
greater than 15 confirm that the orbital forcing instrument
should not pose weak instrument problems.
[20] Most coefficient estimates are fairly stable across

orbital forcing specifications and have the expected signs,
indicating that the general model is robust to the specifica-
tions considered here (Table 2). Both millennial and cen-
tury‐scale feedback estimates are also relatively stable over
different 200 kyr sections of the data sets, with the main
variations correlated with variations in the strength of the

Figure 1. (a) Mid‐June orbital forcing at 60°N [Berger,
1978] instruments for the 800 kyr EPICA Dome C tem-
perature record [Jouzel et al., 2007] in a regression with data
from a composite CO2 record [Lüthi et al., 2008]. (b) The
1500 year composite global temperature reconstruction
[Mann et al., 2008] (EIV with HadCRUT3v) is used in a
regression with interpolated CO2 data from the Law Dome
ice core [MacFarling Meure et al., 2006]. All data sets are
truncated at 1700 A.D. to avoid the Industrial Revolution.

LEMOINE: WARMING INCREASED CO2 D22122D22122

4 of 12



instrument (Figure 4). The paper’s main findings therefore
should not be highly sensitive to the choice of time period.
[21] Univariate regressions and a noninstrumented multi-

variate regression help assess the possible importance of
omitted variables bias and simultaneous equations bias
(Table 3). Failing to disentangle the (positive) causal effect
of CO2 on temperature should make the effect of tempera-
ture on CO2 seem stronger and reduce uncertainty about its
point estimate. Indeed, as expected, the noninstrumented
regressions produce greater feedback estimates with smaller
standard errors. While the instrumented univariate regres-
sion does produce a similar point estimate and standard error
for the coefficient on Tt as do the instrumented multivariate
regressions, it is less useful for estimating millennial feed-

backs because it does not allow previous temperature or
CO2 concentrations to affect time t values.
[22] In estimation of decadal‐scale feedbacks, coefficients

on the more recent CO2 levels are often significant while the
other coefficients are usually not significant (Table 4). This
accords with the intuition that, over such short time scales
and with the correspondingly small variation in CO2 and
temperature over each time step, the time t CO2 level should
be almost wholly determined by the previous period’s CO2

level. Mann et al. [2008] provided several composite tem-
perature records calculated using different instrumental
records and combined using different statistical techniques.
All results reported in this paper use the reconstruction
resulting from their error‐in‐variables estimation procedure
and calibrated using HadCRUT3v instrumental land and

Figure 2. The relationship between temperature at time t (Tt) and the log of CO2 at time t (Ct) estimated
by instrumented and noninstrumented univariate and multivariate regressions over the 800 kyr paleocli-
matic reconstructions. The noninstrumented univariate regression shows demeaned Ct against Tt. The
noninstrumented multivariate regression shows the residuals from a regression of Ct on the covariates
excluding Tt against the residuals from a regression of Tt on the covariates. The instrumented regressions
are similar except replacing Tt with its predicted value from the appropriate first‐stage regression.

Table 1. Estimation Results for the Nondimensional Climate‐Carbon Feedback Factor fcc

Time Scale Specification Data’s Time Step (years) na fcc s.e.b pc

Millennia Base case 1000 525 0.03 (0.009) 0.0001
Millennia Summer insolation 1000 525 0.03 (0.009) 0.0007
Millennia Averaged data 1000 536 0.03 (0.01) 0.0001
Centuries Base case 1000 525 0.009 (0.01) 0.4
Centuries Summer insolation 1000 525 0.006 (0.01) 0.6
Centuries Averaged data 1000 536 0.002 (0.02) 0.9
100 years – 10 109 0.02 (0.005) 0.003
100 years – 25 43 0.01 (0.009) 0.1
50 years – 10 109 0.005 (0.002) 0.006
50 years – 25 43 0.005 (0.004) 0.2

aNumber of observations.
bStandard errors are robust to arbitrary heteroskedasticity.
cTwo‐tailed p value for the null hypothesis that fcc is equal to 0.
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ocean hemispheric means. Using the other error‐in‐vari-
ables temperature reconstruction from Mann et al. [2008]
does not substantially affect the results, but using the
reconstruction developed using the composite plus scale
methodology tends to produce estimates that are not sig-
nificantly different from 0.

5. Discussion

[23] The point estimates and standard errors provide
information about the sampling distribution of the mean, but
the probability distribution for the feedback factor is more
important. Appendix B describes how to develop a proba-
bility distribution by extending the hierarchical Bayes
framework of Lemoine [2010] to combine this paper’s base
case empirical estimates with coupled models’ predictions.

The posterior distribution implied by the empirical studies is
similar to the one implied by coupled models’ output, but
considering both types of data together can further constrain
the posterior distribution (Figure 5). With only data from
coupled models, it is difficult to disentangle the true feed-
back factor from the biases shared among those models, but
empirical estimates provide information about the true
feedback factor that is affected by a different set of biases.
The posterior distribution resulting from using both types of
data has a mean of 0.03 and 5th and 95th percentile values
of −0.04 and 0.09. It also indicates a roughly 70% chance
that climate‐carbon feedbacks are positive, thereby reinfor-
cing other feedbacks such as those due to changes in albedo
and water vapor content. Instead of obtaining point esti-
mates and standard errors, future work could develop

Figure 3. Estimates of the climate‐carbon feedback factor fcc. Coupled climate‐carbon cycle models are
as described by Friedlingstein et al. [2006], and their plotted points are the average of the results from
Lemoine [2010] for the three radiative kernels. Error bars show the 95% confidence intervals for this
paper’s paleoclimatic estimates. Previous paleoclimatic estimates are converted to feedback form using
the factor of 1.2 K (275 ppm)−1 from Torn and Harte [2006] and, in the case of Frank et al. [2010],
indicate the range of “likely” values. These previous paleoclimatic estimates assumed that radiative
forcing increases linearly with CO2 rather than with the log of CO2.

Table 2. Coefficient Estimates and Standard Errors From the Orbital Forcing Specificationsa

Specification nb
Second Stage First Stage

Tt
c Tt−1

c Tt−2
c Ct−1 Const Ot

d Tt−1 Tt−2 Ct−1
e Const

Base case 525 0.005 0.01 −0.01*** 0.9*** 0.8*** 0.007*** 1*** −0.2*** 2** −14***
(0.006) (0.007) (0.002) (0.03) (0.1) (0.002) (0.06) (0.06) (0.8) (5)

Summer insolation 525 0.003 0.01 −0.01*** 0.9*** 0.8*** 0.00009*** 1*** −0.2*** 2** −14***
(0.007) (0.008) (0.002) (0.03) (0.2) (0.00002) (0.06) (0.06) (0.8) (5)

Averaged data 536 0.001 0.02 −0.01*** 0.9*** 0.6*** 0.005*** 1*** −0.4*** 0.6 −6
(0.009) (0.01) (0.004) (0.02) (0.1) (0.001) (0.05) (0.05) (0.6) (4)

aStandard errors (in parentheses) are robust to arbitrary heteroskedasticity. Two‐tailed p values are for the null hypothesis that the true coefficient is
equal to 0: * means p < 0.1, ** means p < 0.05, and *** means p < 0.01; t is in 1000 years.

bNumber of observations.
cUnits of (ln ppm CO2) K

−1.
dUnits of K (W m−2)−1.
eUnits of K (ln ppm CO2)

−1.
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probability distributions directly from paleoclimatic data
and then combine those with coupled models’ predictions.
[24] The proper application of this paper’s empirical

feedback estimates to anthropogenic climate change depends
on the question of interest. Feedback strength may vary with
time scale, and future feedbacks will operate in a world with
different boundary conditions and with radiative forcing
changing with a scale and speed not represented in paleo-
climatic data or in data used to tune coupled models. Further,
feedback strength may depend on the pace of climate change,
and uncertainty about concentration‐carbon feedbacks may
be more important to the total carbon cycle response than is
uncertainty about climate‐carbon feedbacks [Gregory et al.,
2009]. A complete accounting of carbon cycle uncertainty
must include these factors as well as concerns about irre-
versible changes.

[25] Paleoclimatic records suggest that climate‐carbon
feedbacks are positive, despite the presence of measurement
error that should lead to underestimation of feedback
strength. Obtaining more precisely dated paleoclimatic
records with denser data could be crucial for better identi-
fication of feedback strength, and longer Holocene time
series with denser data are important for estimation on
subcentury time scales. It appears as if coupled models’
feedback predictions are more apt than are the higher esti-
mates of previous paleoclimatic work. Importantly, com-
bining coupled models’ output with this paper’s empirical
estimates sufficiently constrains climate‐carbon feedbacks
so that they might not be a dominant source of uncertainty
about future temperature change. Temperature risk assess-
ments are probably more dominated by the possibility of
tipping points and of shared biases among models [O’Neill

Table 3. Coefficient Estimates and Standard Errors in Versions of the Base Case Orbital Forcing Specification Without Using
Instruments and/or Without Including Lagged Variables as Covariatesa

Nb Tt
c Tt−1

c Tt−2
c Ct−1 Const Ot

d

fcc

Millenniale Centuries

Univariate, 638 0.03*** – – – 6*** – 0.1*** 0.06***
noninstrumented (0.0002) – – – (0.008) – (0.005) (0.003)
Univariate, 638 0.007 – – – 5*** 0.02** 0.02 0.01
instrumented (0.01) – – – (0.06) (0.01) (0.02) (0.04)
Multivariate, 525 0.02*** −0.0006 −0.009*** 0.8*** 0.9*** – 0.05*** 0.03***
noninstrumented (0.002) (0.002) (0.002) (0.03) (0.1) – (0.003) (0.003)

aStandard errors (in parentheses) are robust to arbitrary heteroskedasticity in the multivariate case and also to arbitrary autocorrelation in the univariate
cases. Two‐tailed p values are for the null hypothesis that the true coefficient is equal to 0: * means p < 0.1, ** means p < 0.05, and *** means p < 0.01. t is
in 1000 years. The instrumented univariate case has a robust Kleibergen‐Papp F statistic of 6, indicating the potential for a weak instrument problem.

bNumber of observations.
cUnits of (ln ppm CO2) K

−1.
dFirst‐stage regression result with units of K (W m−2)−1.
eIn the univariate cases, assumes that the coefficient on Tt−1 is certainly equal to zero.

Figure 4. Estimates of century‐scale and millennial climate‐carbon feedbacks fcc are relatively stable
over each 200 kyr window in the data set for which the instrument’s strength is stable (as indicated by
the two‐tailed p value on the coefficient of the orbital forcing instrument).
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and Oppenheimer, 2004; Lenton et al., 2008; Lemoine,
2010]. However, climate policy analyses can be especially
sensitive to the positive tail of temperature change dis-
tributions because damages may increase nonlinearly with
the temperature index and because climate decision‐makers

are usually modeled as risk averse [Newbold and Daigneault,
2009; Weitzman, 2009]. Because positive climate‐carbon
feedbacks thicken these policy‐relevant positive tails, con-
sidering their existence and associated uncertainty is
important not just for climate projections but also for eco-
nomic assessments that may otherwise underestimate cli-
matic risks.

Appendix A: Sources of Bias in Estimating
Climate‐Carbon Feedbacks

[26] Previous empirical work estimated climate‐carbon
feedbacks using Little Ice Age data and Vostok ice core data
[Scheffer et al., 2006; Torn and Harte, 2006; Cox and
Jones, 2008; Frank et al., 2010]. These studies ran univar-
iate ordinary least squares (OLS) regressions of CO2 on
temperature, but the estimates produced by such a regression
are vulnerable to several sources of bias that complicate
attempts to apply the results to the current global radiative
forcing experiment. Adjusting them to use log concentra-
tions, those univariate regressions may be represented as

Ct ¼ �þ �Tt þ �t: ðA1Þ

where Ct is the log of the CO2 concentration at time t, Tt is
the temperature at time t, m is a constant term, and �t is the
random unobserved error at time t. The parameter of interest
is b, which ideally gives ∂C/∂T or even dC/dT. The line-
arized full system may look more like

Ct ¼ �C þPm
i¼0 �iTt�i þ

Pn
j¼1 �jCt�j þ 	t

Tt ¼ �T þPp
i¼0 �iCt�i þ

Pq
j¼1 
jTt�j þ �t

�
: ðA2Þ

In this representation, CO2 concentrations and temperature
each depend on their own past values, on the past values of
the other variable, on the constants mC and mT, and on the

Table 4. Coefficient Estimates and Standard Errors From the
Specifications Used to Estimate Decadal‐Scale Feedbacksa

Parameter

10 Year Time Step
(n = 109)

100 Year Time Step
(n = 43)

Estimate S.E. Estimate S.E.

DTt 0.0001** (0.00005) 0.0003 (0.0004)
DTt−1 0.00008 (0.00006) 0.0008 (0.0005)
DTt−2 0.0002** (0.00009) 0.0006 (0.0005)
DTt−3 0.0001* (0.00007) 0.001** (0.0005)
DTt−4 0.00004 (0.00007) −0.0001 (0.0004)
DTt−5 0.0002 (0.0001) 0.0005 (0.0003)
DTt−6 0.0002* (0.00009)
DTt−7 0.0002 (0.0001)
DTt−8 0.0002* (0.00008)
DTt−9 −0.0002** (0.0001)
DTt−10 0.00007 (0.0001)
DTt−11 0.00004 (0.00006)
DCt−1 1*** (0.1) 1*** (0.3)
DCt−2 −0.7*** (0.2) −0.2 (0.4)
DCt−3 0.7** (0.3) 0.2 (0.3)
DCt−4 −0.6** (0.2) −0.2 (0.1)
DCt−5 0.4 (0.3) −0.01 (0.09)
DCt−6 −0.3 (0.3)
DCt−7 0.3 (0.3)
DCt−8 −0.2 (0.2)
DCt−9 0.2 (0.2)
DCt−10 −0.2* (0.1)
DCt−11 0.06 (0.08)

aStandard errors are robust to arbitrary heteroskedasticity. Two‐tailed p
values are for the null hypothesis that the true coefficient is equal to 0: *
means p < 0.1, ** means p < 0.05, and *** means p < 0.01.
Coefficients on temperature terms are in units of (ln ppm CO2) K

−1.

Figure 5. The posterior distributions for fcc produced by the statistical framework from Lemoine [2010]
when the prior distributions are updated with output from coupled climate‐carbon cycle models, with this
paper’s base case paleoclimatic estimates for the orbital forcing specifications, and with both the coupled
models’ output and this paper’s base case paleoclimatic estimates.
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random errors ht and nt. Here, the parameter of interest
depends on the allowed time for carbon cycle responses, but
it is either b0 or some combination of the b, g, a, and 

parameters that gives the effect of a maintained unit change
in temperature on future log CO2 concentrations.
[27] Assume for the rest of this section that the parameter

of interest is b0, which may be the case if the data’s time
step is larger than the time scale of interest in the feedback
application. When the true system is (A2), estimating b0
via the univariate regression in equation (A1) introduces
three sources of bias via the correlation between �t and Tt.
First, assume that the true system has, ∀i > 0, ai = bi = 0
and, ∀i, gi = 
i = 0. In this case, previous CO2 con-
centrations and previous temperatures would not affect
current CO2 concentrations and temperatures, but the
current CO2 concentration and the current temperature
would affect each other. The simplified system of equa-
tions becomes

Ct ¼ �C þ �0Tt þ 	t
Tt ¼ �T þ �0Ct þ �t

�
; ðA3aÞ

where ht = �t from equation (A1). Let b0 be the OLS
estimate of b0 from equation (A1) so that plim b = b0 +
CovðTt ;�tÞ
VarðTT Þ . If Tt is exogenous for Ct, then Cov(Tt, �t) = 0 and b
is a consistent estimator of b0. However, from (A3a), Cov
(Tt, �t) = Cov(Tt, ht) = �0

1��0�0
Var(�t). Because we know a0 >

0 (indeed, this is the greenhouse effect in this specification),
the OLS estimate b is asymptotically biased upward as long
as �t is uncertain. Unobserved nontemperature factors that
affect CO2 levels through �t also affect temperature via the
usual radiative forcing mechanism, which biases the OLS
estimate of the effect of temperature on CO2 by amplifying
the relationship between observed temperature and
observed CO2. Measurement error in the CO2 data is also
subsumed in �t and thus can also produce simultaneous
equations bias. This bias may be nonexistent if temperature
is deemed not to respond to CO2 on the time scale of interest
(as Frank et al. [2010] and Scheffer et al. [2006] argued for
the Little Ice Age) or if there is both no nontemperature
driver of CO2 and no measurement error for CO2. Instru-
mental variables methods potentially enable one to avoid
simultaneous equations bias without making such strong
assumptions.
[28] Second, replace the previous paragraph’s assump-

tions with the assumption that, ∀i, ai = 0. This means that
CO2 does not affect temperature in the data of interest,
which is an explicit reason Scheffer et al. [2006] and Frank
et al. [2010] chose to study the Little Ice Age. In addition,
assume that 9j > 0 such that 
j ≠ 0. The system of equations
now becomes

Ct ¼ �C þPm
i¼0 �iTt�i þ

Pn
j¼1 �jCt�j þ 	t

Tt ¼ �T þPq
j¼1 
jTt�j þ �t

�
: ðA3bÞ

Simultaneous equations bias does not appear if estimating
b0 in (A3b) from equation (A1), but the lagged variables
create a different problem. In (A1), the error term �t is a
function of lagged temperature values when the true system
is (A3b). However, because previous temperatures affect the
temperature observed at time t,Cov(Tt, Tt−i) ≠ 0 for some i > 0,
and because previous temperatures also affect CO2 at time t

but are omitted from the estimated system (equation (A1)), we
have Cov(Tt, �t) ≠ 0. The lagged temperatures act as omitted
variables that bias estimates of b0 in equation (A1). Because
these omitted variables are probably positively correlated
with Tt and probably have positive coefficients in (A3b), this
bias probably also inflates positive estimates of b0.
[29] Third, replace the previous paragraphs’ assumptions

with the assumption that the true system has, ∀i > 0, bi = 0
and, ∀i, ai = gi = 
i = 0. The true system becomes

Ct ¼ �C þ �0Tt þ 	t
Tt ¼ �T þ �t

�
; ðA3cÞ

where ht is uncorrelated with any time’s temperature or with
any previous CO2 level. OLS estimation of b0 via equation
(A1) would be consistent and unbiased with system (A3c)
if temperature were measured without error. However,
temperature is actually measured but imperfectly. Let the
observed temperature values be T*t, where

Tt* ¼ Tt þ wt; ðA4Þ

and wt is a random variable that produces measurement
error. Substituting into (A3c), we get

Ct* ¼ �C þ �0Tt*þ 	
0
t

where 	
0
t ¼ 	t � �0wt:

ðA5Þ

Measurement error wt in Tt induces nonzero correlation
between h′t and the observed T*t. If wt has variance sw

2 , we
have

CovðT*t ; 	
0
tÞ ¼ CovðTt þ wt; 	t � �0wtÞ ¼ ��0�2w: ðA6Þ

The random, unobserved measurement error in the tem-
perature record biases the OLS estimate of b0 toward zero
(“attenuation bias”). This measurement error may be due
to errors in measurement of isotopes, in inferences about
local temperature from isotopes, in inferences about global
temperature from local temperature, and in the assignment
of relative dates to the recorded temperature and CO2.
Measurement error should be the primary source of bias
remaining in the present study, and it is to some extent
inescapable in work using data from limited paleocli-
matic data sets.

Appendix B: Hierarchical Bayes Model for
Combining Coupled Models’ Output With
Empirical Estimates

[30] This appendix outlines a statistical model which
largely follows that described by Lemoine [2010] but is
adjusted to include a second group of studies (this paper’s
base case paleoclimatic estimates) that may have their own
shared biases. Let fcc represent the true value of the climate‐
carbon feedback factor and let �j represent the biases shared
by group j (where j is an index indicating that studies are
coupled models or paleoclimatic estimates). Crucially,
assume that �1 and �2 are independent of each other,
meaning that empirical studies’ shared biases are assumed to
be independent of those impacting coupled climate‐carbon
cycle models.
[31] The empirical studies used here are the base case

estimate of millennial climate‐carbon feedbacks and the
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base case estimate of century‐scale climate‐carbon feed-
backs. For each empirical study i, lij represents the diver-
gence between the object of the estimation procedure (̂zi)
and the feedback of interest for projecting future tempera-
ture change (fcc). lij includes both the biases idiosyncratic to
study i and the biases �j common across empirical studies
when applied to future climate change. Here lij is drawn
from a normal distribution centered on its group’s shared
biases �j and having standard deviation tj. Let ẑi be the best
estimate for empirical study i with ẑi as the standard error of
that estimate, where the estimates and standard errors are as
reported in the main text.
[32] Finally, for coupled models’ predictions, define sj to

be the standard deviation of a study’s idiosyncratic bias
conditional on its shared biases. Each coupled model i
generates “observations” of its central feedback estimate Mij

by combining its output with a radiative kernel h as
described by Soden et al. [2008]. We denote these obser-
vations by yhi and let 
j be the standard deviation of those
observations around Mij. The standard deviation 
j therefore

controls intrastudy variation while sj controls variation
between models. Similarly, tj controls variation between
empirical studies while ~zi describes variation within a single
empirical study’s estimate.
[33] The model can be written as

�ij � Nð�j; jÞ ðB1Þ

ẑi � tðfcc þ �ij;~zi; df Þ ðB2Þ

Mij � Nðfcc þ �j; �jÞ ðB3Þ

yhi � NðMij; 
jÞ; ðB4Þ

where N(m, s) is a normal distribution with mean m and
standard deviation s and where t(x, y, z) is a t distribution
with location parameter x, scale parameter y, and shape
parameter z. df is the models’ degrees of freedom and is

Figure B1. The four types of prior distributions described in Table B1.

Figure B2. Contour plots for the joint distribution of the feedback factor fcc (x axes) and the coupled
models’ shared bias term �1 (y axes).
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equal to 520 for the base case specifications. The prior
distributions are given in Table B1 and plotted in Figure B1,
and they follow those used by Lemoine [2010]. The poste-
rior distributions were sampled using Markov chain Monte
Carlo methods as implemented in WinBUGS version 1.4.3
[Lunn et al., 2000]. Each posterior distribution generated
one million samples after a burn‐in period of one million
samples. The sample size was large enough for multiple
chains to converge on the posterior distributions.
[34] Figure B2 shows the influence of models’ predictions

and empirical estimates on the joint distribution for the true
feedback factor fcc and the coupled models’ shared bias term
�1 (where the coupled models are group 1). Data from the
coupled models can only constrain the sum fcc + �1, leading
to a ridge in the joint posterior distribution running along
values of fcc and �1 that produce the same value for fcc + �1
and have similar prior densities (Figure B2b). However,
including the base case empirical results from this paper can
further constrain the distribution for fcc because �2 is
assumed to be independent of �1 and the empirical estimates
are similar to the coupled models’ predictions. A posterior
distribution produced using both types of data still has a
ridge along similar values of fcc + �1, but the ridge is now
shorter because the posterior distribution of fcc is also con-
strained by the empirical studies’ information about the sum
fcc + �2 (Figure B2c).

[35] Acknowledgments. Support came from the Robert and Patricia
Switzer Foundation Environmental Fellowship Program.
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