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The race



Economic growth brings more and faster
travel, which requires more fue
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Conventional oil production will peak some day

e At what rate will innovation and investments in
new technologies be made to replace conventional

petroleum?
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Greenhouse gas emissions must be essentially
eliminated (pace geo-engineering)

 What technological innovations, investments, and
lifestyle changes will allow us stabilize the climate?
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o Other environmental issues are also important



Security risks may be growing but have not
motivated large scale substitution yet.

e Qil supply disruptions

— Concentration of reserves in Middle East creates physical and
economic security risks

— Infrastructure costs make energy supply path dependent

e Poor governance

— Many people in oil-rich countries
have poor life prospects




The race for 215t century fuels:
Providing fuels that customers will buy

Efficiency Fossil Biofuels Electricity Hydrogen

Infrastructure

Vehicles

Resources

Environment

Note: These are rough, subjective judgments that depend on how

various fuels are produced, and they will change with innovation. ’



Efficiency is Job 1



U.S. vehicle efficiency has declined as
innovation was used to improved performance
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U.S. (and California) vehicle efficiency
lags behind world standards
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Higher vehicle efficiency should be our first
priority, it will even save us money!

Average fuel economy Net savings

improvement | (3 years, no discount)

Subcompact car 12% $200
Midsize car 20% $350
Large car 27% $1,500
Small SUV 25% $1,500
Large SUV 42% $1,300
Large Pickup 38% $1,100

Source: NRC 2002

Notes: Gasoline $1.50/gal.
Diesel engines are ignored

Hybrid drivetrains are ignored 1



But, efficiency is not the entire answer
e U.S. automakers and unions are poorly positioned to compete

e Inherent tradeoffs in vehicle performance and cost will
eventually emerge — f -

e Efficiency is not a source of energy, fuels will still be needed.
e And, ...
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Billions of people deserve access to more
energy in the future

Energy Consumption per capita
(tonnes oil equivalent/yr.)

Bl 2045 Source: BP
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The competitors

Criteria

e Supply infrastructure
e Vehicles

e Resource base

e Environment

14



Fossil fuels

e Existing infrastructure needs expansion
and protection

e Excellent energy storage and obviously' _
compatible with existing vehicles |

e Resource base is very large

e Worsening environmental effects



Access: >90% of conventional oil are
nationalized, challenging private oil companies
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Access: >90% of conventional oil are
nationalized, challenging private oil companies
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Economics and access are driving oil production
towards abundant, low-quality resources
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Low-quality fossil fuels have large
environmental consequences
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Carbon capture and storage (CCS) may let us
use fossil fuels and stabilize the climate

Power Station
with CO2 Capture

Dissolution
1. Dense plume
2. Droplet plume

Dispersion
3. Towed pipe
4. Dry ice

Deep Saline Formation ==

Isolation
5. CO, lake
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Note: CCS does not address other environmental issues like water use, land disturbance, etc.




Biofuels

Some new distribution
infrastructure may be needed

Good to excellent energy
storage, current vehicles need
little to no change

Limited resource base

Uncertain environmental effects




e Feedstocks are agricultural commodities

Billion gallons per year
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Land use is central to most environmental

and social effects of biofuels

e Direct land use B
— Soil erosion e
— Biodiversity loss i L

— Most biofuel income goes to landowners | g 2003 -Mississippi River

o Indirect land use (displacement

— Global markets for energy and food
create global competition for land use




Market forces cause indirect GHG emissions
(Land use change is only one indirect effect)

U.S. corn farmer
switches from
corn/soy to
corn/corn to supply
a new ethanol plant

-

U.S. soy
exports go
down and
world soy
prices rise

Additional land
in Brazil (for
'l—} instance) is
put into soy
production

1

Soy farmers everywhere
use more inputs to
increase yields

. &

Indirect emissions

Production emissions
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NOTE: These changes are all
relative to no additional biofuels 24



Indirect land use may be very significant
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Many possible biofuel production pathways exist

FEEDSTOCK PROCESSING MARKET
Sugars _ Animal Feed
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*
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Ligno-cellulosic wastes & residues Catalysis Di-Methyl Ether
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debris, etc.
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R :
—

Trans-Esterification

Algae

Hydrogenation

Hydrocarbons

FAME biodiesel

Source: Farrell and Gopal (2008)

Renew. Diesel

<

Hydrogen

Partial representation — not all possibilities shown




Research may liberate us from the need
to use arable land for biofuels

e Ligno-cellulosic fermentation
o Gasification & synthesis

* Fast Pyrolysis

Algae



Electricity

Little new distribution infrastructure fj## %

is needed, at least at first

Energy storage batteries are poor,
so vehicles may be expensive

Resource base is very large

Uncertain environmental effects




The Plug-in Hybrid Electric Vehicle (PHEV)

(Values given for all Electric Range, AER)

Hybrid Electric Vehicle HEV 0 Hybrid Electric Vehicle HEV 20
*Engine downsized ~15% *Engine downsized ~33%
*Idle-off and regenerative braking Larger battery and grid charging
Efficiency increased ~50% *Energy for short trips is from grid
*Battery state of charge kept in narrow range *Deeper discharge of batteries

Large ICE o MediumICE  CVT

Fuel Tank
l Batteries

Medium EM

Fuel Tank ‘I'
05 l Acc. Pulley

l Batteries

V
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Example: Hymotion PHEV
e Plug-In Hybrid Electric Vehicle

e 20 mile Li-Ion battery pack
e Initial cost ~$10,000 (maybe $5,000 in volume)

e Voids warranty, battery life unknown

30




Example: Tesla — high performance niche




Many manufacturers are developing (PH)EVs

Charge port
and battery
charger

Liquid-cooled
lithium ion
battery pack

Transmission Power inverter
00-kW alactric drive motor




Fuel savings are less than today’s battery prices

Gasoline price $2/gal $3/gal $4/qgal
Annual PHEV fuel savings
Elec. Price ($/kWh) Ccv HEV Cv HEV Ccv HEV
$0.05 $294 $155 | $471  $264 $649  $373
$0.10 $231 $93 $409  $202 $587  $311
NPV of PHEV fuel savings (n=12, r=16%)
Elec. Price ($/kWh) Ccv HEV Ccv HEV Ccv HEV
$0.05 $1,525 $807 |$2,450 $1,372 | $3,375 $1,938
$0.10 $1,201  $483 |$2,216 $1,048 | $3,051 $1,614
Breakeven battery costs ($/kWh, n=12, r=16%)
Elec. Price ($/kWh) Ccv HEV Ccv HEV CV HEV
$0.05 $298 $277 | $479  $472 $600  $666
$0.10 $235 $166 | $416  $360 $597  $555

Source: Lemoine et al (2008)




PHEVs can reduce GHG emissions substantially

Energy sources

Gasoline US avg. CA avg. Wind

Compact Car

Cv 294

HEV 225
PHEV20 211 199 116 1
PHEV60 203 198 115 1

Sport Utility Vehicle

Cv 605

HEV 401
PHEV20 375 346 202 2
PHEV60 367 329 192 2

Source: Arons et al (2008) Units: gCO2e/mi. 34



Hydrogen

Major new distribution infrastructure is
needed

Energy storage is poor and fuel cell
vehicles will likely be expensive

Resource base is very large

Uncertain environmental effects




Infrastructure

Vehicles

Resources

Environment

The race for 215t century fuels

Efficiency

Fossil

Biofuels

Electricity Hydrogen
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Note: These are rough, subjective judgments that depend on how

various fuels are produced, and they will change with innovation.
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