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Topics coccced]

BERKELEY LAaB

* Introduction

« Capture options

« CCS costs

« Storage options/mechanisms
- Storage capacity

+ Geologic storage risks

* Need for monitoring

* Field studies

- Beyond coal
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CO, Capture and Storage Technology ,_N

« CCS is a four-step process

—Pure stream of CO, captured from flue gas or other process
stream

— Compressed to ~100 bars
—Transported to injection site

—Injected deep underground into geological formation and
stored safely for thousands of years

Pipeline Underground

Capture Compression Transport Injection
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Options for CO, Capture
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CCS Costs d| A

BERKELEY LAaB

 Power generation from coal
—Additional $35 - 45/ MWh
—$50 — 60/tonne CO, avoided
- Power generation from natural gas
—Additional $30/MWh
—$80/tonne CO,, avoided
* Industrial processes producing pure CO, stream
— $20 — 30/tonne CO, avoided
« EOR credit can offset ~$20/tonne

Source: H Herzog, MIT
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Elements of Cost Estimates /\| A

BERKELEY LAaB

* Region specific (CA conditions for given costs)
90% of CO, is captured

Transport and storage included ($10/tonne)
—Monitoring costs estimated as $.10 - .50/tonne
Current technology

Operations at scale
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Primary Storage Options

BERKELEY LAaB

« Qil and gas reservoirs

—Storage with Enhanced Oil Recovery (EOR),
Enhanced Gas Recovery (EGR)

—Storage only
* Deep, unminable coal beds

—Storage with Enhanced Coal Bed Methane
(ECBM) recovery

 Saline formations
—Storage only
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Geologic Storage Mechanisms ceerery] i)

BERKELEY LA

« Physicall/structural trapping Structural Trap
* Dissolution

* Phase trapping

* Mineralization

Surface adsorption
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CO, EOR is a Commercial =
Technology /"

I Production Well]

Produced Fluids (Oil. Gas and Water)
Separation and Storage Facilities

| Carbon Dioxide |

Water
Injection
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Saline Formation Storage Is Already _—
Under Way

- Statoil injects 1x10° tons per
year at Sleipner

- BP to inject 0.8x10° tons per
year at In Salah

CO, Storage at Krechba

CO, Injection Well

Formation

Sleipner East
Production-and Injection Wells

WLAWRENBE BERKELEY NATIONAL L ABORATORY I



N

Prospective Saline Formation /\I A
Storage Broadly Distributed

Storage Prospectivity

@ Highly Prospective
Prospective

Non=prospective 3 3.000 d?
Km .

From Bradshaw and Dance 2005

“It is likely that the technical potential for geological storage is
sufficient to cover the high end of the economic potential range (2200
GtCO,), but for specific regions, this may not be true.” IPCC, 2005
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Regional Studies Provide Capacity ’\ ‘Q

Status of Sedimentary Basins
in California
Saline Form_at|or! Capamty, Sedimentary Basin Status
California Excluded
Included for further investigation
S 300
8 230 A m High Range[— Othtla\lr I;ayTrz .
m Natural Gas Fie
o 200 - B awRange:— = Oil Field
g 150 4 1 County Boundary
= 100 e Power plants
c A Refineries
S 50 ® Cement and Lime
o 0. e % Gas Processing Plants

Gas reservoir capacity: 1.7Gt
Oil reservoir capacity: 3.6Gt
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HSE Risks of Geologic Storage ’\\| 0

* Impacts of unintended
leakage

—Health and safety
of workers and
general population

—Environmental
impacts
—Unwanted intrusion
into drinking water
- Earthquakes
* Unwanted intrusion of

3 i e T e R et \ oA
D WS e ﬁ:" - e

T s Ot S im0 il AR
saline fluids Tree kill at Mammoth Mountain, CA

http://quake.wr.usgs.gov/prepare/factsheets/CO2/
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International Consensus on =,
Geologic Storage Issues Provided rr/r}| ‘...

%

“With appropriate site selection

CARBON DIOXIDE informed by available subsurface

CAPTURE information, a monitoring program
AND STORAGE to detect problems, a regulatory
system, and the appropriate use
of remediation methods to stop or
control CO, releases if they arise,
the local health, safety, and
environment risks of geological
storage would be comparable to
risks of current activities such as
natural gas storage, EOR, and
deep underground disposal of

acid gas.” 1pcc, 2005
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Risk Decreases Rapidly After ::>r| ﬂ
—0parational Phase _
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Source: S Benson, Stanford
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Plume Mobility Decreases with Time o

‘m
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Pressure Decays Rapidly in Large
Reservoirs "

Low-permeability cap rock
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Why Monitor? ﬁ ‘.ﬁ

BERKELEY LAaB

« Confirm storage efficiency and processes
« Ensure effective injection controls

* Detect plume location and leakage from storage
formation

« Ensure worker and public safety
- Design and evaluate remediation efforts
- Detect and quantify surface leakage

* Provide assurance and accounting for monetary
transactions

« Settle legal disputes
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A Substantial Portfolio of Monitoring:;>| A
Techniques are Available ‘

« Seismic and electrical
geophysics
* Well logging

* Hydrologic pressure and
tracer measurements

« Geochemical sampling
- Remote sensing

« CO, sensors

« Surface measurements

—

Surface

seismic VSP

(Figures courtesy

Cross-well of S Benson)
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Monitoring of CO, Using Seismic /Q\I A
Methods

(Q Offset(m) 30

Vet Ay ~ PIRCRT T
;ropuuuis:m X = i A : =35
o — —— --:;2\;‘—; .o—;.,f—.u-F:-‘;—i;
h s ) e
=R = Ao
== =L
O A=
c o c e
"~ ' - =
|ease utsira sana 1994 1999 2001
T
3

Injection T T Monitoring

Tlme-lapse selsr.nlc monltorlng Well -EOHANglésIN v%fom%s(KM;s')o Well

results from Sleipner, after Chadwick et ] ]

al., 2005 Cross-well imaging and RST logs
from Frio saline injection test

I —— LAWRENCE BERKELEY NATI(PIQIEXGLQIQQ%)‘TDRY



Pilots Provide Regional Knowledge Base :‘—hl ‘Q
Essential for Large Scale Implementation

* Pilots demonstrate best
sequestration options, unique
technologies and approaches, in
region

» Pilots involve site-specific focus
for

— Testing technologies

— Defining costs

— Assessing leakage risks g

— Gauging public acceptance ® =

— Exercising regulatory
requirements

— Validating monitoring methods

Photos from Frio Iine formation
CO, injection test
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CCS Beyond Coal cocccey]

* Natural gas
* Industrial processes

Legend
E California
_Ce me nt California sedimentary basins
- - - Forest at high and very high fire risk
—Refineries
(hydrogen plants)
—Ammonia

* Fermentation
processes (eg.

biofuels) W+E
* Linking with

terrestrial (forest o 5o 100

management)

WLAWRENEE BERKELEY NATIONAL L ABORATORY I



N

Current Status d| A

BERKELEY LAaB

* |IPCC Special Report on CCS; CCS included in
IPCC 4th Assessment as mitigation option

« Small number of commercial projects underway
world-wide

« US DOE research effort focused on field testing
(~$125M/yr and increasing)

 Numerous legislative actions at state and federal
level
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Exhibit B

U.S. MID-RANGE ABATEMENT CURVE - 2030

(] Abatement
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Summary cocceed) ‘iﬁ

BERKELEY LAaB

* The technology necessary to undertake CCS is
available today

« Cost-effectiveness is driven mostly by capture
costs

* Risks can be managed

* Field testing is essential to gain experience

* Plenty of opportunities for innovation
—Fossil power generation optimized for CCS
—Basic physics of storage mechanisms

—New monitoring approaches, increased
resolution

—Thinking beyond coal
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