

Lecture 5: A New Economics of the Planet

Daniel Kammen

Class of 1935 Distinguished Professor of Energy Energy and Resources Group | Goldman School of Public Policy Director, Renewable and Appropriate Energy Laboratory University of California, Berkeley

April 25 2016

1. The climate crisis reinvented Klein, chapters 1 & 2 Optional: Dove & Kammen, chapter 1	(3.28.2016)
2. Our mistrust of the future makes it hard to give up the pa Klein, chapters 3 Optional: Dove & Kammen, chapter 5	ast (4.4.16)
3. We don't tenure Mother Teresa Klein, chapter 9 Optional: Dove & Kammen, chapter 2	(4.11.2016)
4. What are the barriers to action? Klein, chapter 6 - 8	(4.18.2016)
5. A new economics of the planet Klein, chapter 4 Optional: Dove & Kammen, chapter 3; Klei	(4.25.2016) n 12
6. Pasteur's Quadrant Klein, chapter 7, 11 Optional: Dove & Kammen, chapter 4	(5.2.2016)

Resources:

Website: http://rael.berkeley.edu

Twitter: @dan_kammen

Source: 27-Sep-2015 Climate Scoreboard @Climate Interactive www.ClimateScoreboard.org

Rachel Carson

Scientist

Author

Campaigner

Cancer victim

Darby, William J. 1962. "Silence, Miss Carson." Chemical & Engineering News (Oct. 1): 62-63.

VIEWPOINT

Silence, Miss Carson

Silent Spring. Rachel Carson. 368 pages. Houghton Mifflin Co., 2 Park St., Boston, Mass. 1962. \$5.00. Reviewed by Dr. William J. Darby.

Dr. Darby is professor and chairman of the department of biochemistry and director, division of nutrition, at Vanderbilt University school of medicine; member and past chairman of the Food Protection Committee, National Academy of Sciences-National Research Council' and a member of the NAS-NRC Food and Nutrition Board.

"Silent Spring" starts with a bit of dramatic description which the author then acknowledges does not actually exist. It then orients the reader to its subject matter by stating that "only within. . .the present century has man. . .acquired significant power to alter the nature of his world." It identifies as irrevocable and "for the most part irreversible" the effects of "this now universal contamination of the environment [in which] chemicals are the sinister and little recognized partners of radiation in changing the very nature of the world, the very nature of life itself."

STORMS OF MY GRANDCHILDREN

THE TRUTH ABOUT THE COMING CLIMATE CATASTROPHE AND OUR LAST CHANCE TO SAVE HUMANITY

JAMES HANSEN

UNABRIDGED FIELD NOTES from a CATASTROPHE INCLUDES NHANCED CI MAN, NATURE, AND CLIMATE CHANGE

Elizabeth Kolbert Read by Hope Davis with an introduction by the Author

WHY WE NEED A GREEN REVOLUTION -AND HOW IT CAN RENEW AMERICA

What is sustainable development?

- SD is the achievement of a sustained path of economic growth which does not undermine future generation possibilities of consumption
- Different definitions of what "future generations" are
 - An orthodox economist would claim that this depends on our time preference \rightarrow discount rate reasoning..
 - The higher the discount rate, depending on consumption and oportunity costs factors, the less future benefits and costs are valued...
 - r = pure time myopic preference + consumption growth; otherwise equals tha market oppotunity cost, the foregone benefit of an investment

Caution and a Method: Know the Trend: Environmental Indicators vs. Income

Two Views

- Pessimists ("Mathusian" or "Cassandra")
 - Economies of Developed Nations are unsustainable; developing nations cannot follow in their path; technology is not keeping pace with resource depletion, environmental impact
- Optimists ("Cornucopian" or "Dr. Pangloss")
 - No barriers to growth; substitutes will be developed for scarce resources; economic development and technology produce net improvement in environmental quality

The ER100 Bet:

Simon offered to bet \$1000 that the price of any five commodities would decrease from 1980 to 1990. Ehrlich et al. selected Cu, Cr, Ni, Sn, W. Simon won.

Simon subsequently offered to bet that any set of environmental measures relating to human welfare would get improve. Ehrlich et al. selected CO₂, N₂O, O₃, temperature, SO₂ in Asia, tropical forest, per-capita grain and fish, species, AIDS, sperm counts, rich-poor gap.

Simon declined.

Only 4 of 47 elements increased in price over the last century

Really Simple Math, right?

Recall that GNP=C+I

• Recall that Net NP= GNP – depreciation of capital

 Capital stock dynamics depends on accumulation and depreciation

Figure 6.6 Indonesian GDP Adjusted for Resource Depreciation

Mind the (Economic) Gap: Social and Private Cost

Mind the (Economic) Gap: Social and Private Cost

There is no reason to believe that bureaucrats and politicians, no matter how well meaning, are better at solving problems than the people on the spot, who have the strongest incentive to get the solution right.

— Elinor ()strom —

AZQUOTES

200 9 Nobel Prize in Economics

SD is linked to Total capital or natural capital?

- Total capital = human capital + natural capital
- Each capital stock is defined by a rate of growth, I, less any Depreciation
- If I=dep, then capital is steady

- Thus, a first intuitive golden rule for SD is that total K should be at least constant, Inv should at least match depreciation. (And that assumes no new demands on resources)
- Genuine saving rule: *Investment >= depreciation*

..but..

- This may imply a decreasing natural capital stock, if natK is substituted by other forms
 - This is the western country history
 - i.e. OPEC countries management of non renewable resources
 - UK oil exploitation
 - In any case, rents from natural resource use should be re-invested..

SD is linked to Total capital or natural capital?

- Total capital = manmade + human capital + natural capital
- Each capital stock is defined by a rate of growth, I – Deprec.
- If I=dep, then capital is steady
- Thus, a first intuitive golden rule for SD is that total K should be at least constant, Inv should at least match depreciation.
- Genuine saving rule: *Investment >= depreciation*

..but..

- This may imply a decreasing natural capital stock, if natK is substituted by other forms
 - This is the western country history
 - i.e. Arab countries management of non renewable resources
 - UK oil exploitation
 - In any case, rents from natural resource use should be re-invested... right?

GHG Intensity INHO I Four Actions to Reduce Emissions GHG Intensity-Demand Diagram GHG Intensity Fuels Electricity Fuels Electricity Demand Demand 2050 BAU **Emissions** (830 MtCO₂e) Summary 1. "Low-Carb" Fuels + Electric Fuels Electricity Demand

GHG Intensity

Fuels

Demand

1. Efficiency

2. Electrification

The Challenge is Big...

Figure 8

Figure 8. Yearly generation by fuel in 2026-2029 for all scenarios discussed in this paper at an emission level consistent with the 450 ppm climate stabilization target (54% of 1990 carbon emission levels by 2030). The carbon price adder, cost of power, and cumulative new transmission built at the 450 ppm climate stabilization target are also tabulated for each scenario in 2026-2029. Results in this figure are obtained by varying the carbon price adder for each scenario until the target emission level is reached.

Two dimensions of carbon emissions

Carbon Pricing 101

Costs of fossil fuel use are not included in the current price

- Hurricanes (Sandy \$65b), drought, health costs, sea level rise
- Social Cost of Carbon estimates from \$37 to >\$400/ton CO₂e
- Fossil fuels are artificially inexpensive

Put a price on carbon emissions so users pay the fair price

- Fossil fuel use will decrease; CO₂ emissions will decrease
- Alternatives become more affordable and grow
- The economy can also grow

Pricing Carbon is not a new idea

Locations of Existing, Emerging & Considered Carbon Pricing Instruments

Figure from World Bank report, 2014

© http://PriceonCarbon.org

Pricing Mechanism	Emissions Included	Revenue Use

Pricing Mechanism	Emissions Included	Revenue Use
Carbon Tax or Fee	CO ₂	
Cap and Trade	What about:	
Cap and Dividend	Biodiversity	
	Cultural Survival	

Pricing Mechanism

	Cap and Trade	Carbon Tax
Emissions	Declining emissions cap	Emissions volume
EIIIISSIOIIS	set by government	based on market
Drico	Price based on market	Rising price set by
FILE	THEE DASEG OFFICIAL	government

Both mechanisms have been tried; both <u>can be</u>effective.

© http://PriceonCarbon.org

Complications

Offsets

Projects which sequester carbon can offset some emissions/permits

© http://PriceonCarbon.org

Emissions from Different Sectors

Carbon Markets in Place Today

Pricing Mechanism	Emissions Included	Revenue Use
Carbon Tax or Fee Cap and Trade	Electricity generation Transportation Industrial	Government Programs Mitigate/adapt Reduce deficit Infrastructure, etc Revenue Neutral Return to people Reduce other taxes

Pricing Mechanism		Revenue Use
Carbon Tax or Fee Cap and Trade	California	Government Programs Mitigate/adapt Reduce deficit Infrastructure, etc Revenue Neutral Return to people Reduce other taxes

Climate Accounting ... New Math!

Emissions	Industrialized	Developing
Category		
Cumulative	86	14
CO ₂ , energy		
Cumulative	68 - 80	32 - 20
CO ₂ , energy,		
biota		
CO_2 , energy	72	28
(current)		
Partial CO ₂ ,	57	43
CH_4		
(current)		
Comprehensive	52 - 57	48 - 43
(current)		

Pathway to two degrees

What does it mean to 'solve the carbon and climate problem' over the next 50 years?

What is a "Wedge"?

A "wedge" is a strategy to reduce carbon emissions that grows in 50 years from zero to 1.0 GtC/yr. The strategy has already been commercialized at scale somewhere.

Cumulatively, a wedge redirects the flow of 25 GtC in its first 50 years. This is 2.5 trillion dollars at \$100/tC.

A "solution" to the CO_2 problem should provide at least one wedge.

Wedges #1 - #8 (out of 15)

	Option	Effort by 2054 for one wedge, relative to 14 GtC/year BAU	Comments, issues
Energy Efficiency and Conservation	Economy-wide carbon-intensity reduction (emissions/\$GDP)	Increase reduction by additional 0.15% per year (e.g., increase U.S. goal of reduction of 1.96% per year to 2.11% per year)	Can be tuned by carbon policy
	1. Efficient vehicles	Increase fuel economy for 2 billion cars from 30 to 60 mpg	Carsize, power
	2. Reduced use of vehicles	Decrease car travel for 2 billion 30-mpg cars from 10,000 to 5,000 miles per year	Urban design, mass transit, telecommuting
	3. Efficient buildings	Cut carbon emissions by one-fourth in buildings and appliances projected for 2054	Weak incentives
	4. Efficient baseload coal plants	Produce twice today's coal power output at 60% instead of 40% efficiency (compared with 32% today)	Advanced high-temperature materials
Fuel shift	5. Gas baseload power for coal baseload power	Replace 1400 GW 50%-efficient coal plants with gas plants (4 times the current production of gas-based power)	Competing demands for natural gas
CO ₂ Capture and Storage (CCS)	6. Capture CO ₂ at baseload power plant	Introduce CCS at 800 GW coal or 1600 GW natural gas (compared with 1060 GW coal in 1999)	Technology already in use for H_2 production
	7 . Capture CO_2 at H_2 plant	Introduce CCS at plants producing 250 MtH ₂ /year from coal or 500 MtH ₂ /year from natural gas (compared with 40 MtH ₂ /year today from all sources)	H_2 safety, infrastructure
	8. Capture CO ₂ at coal-to- synfuels plant	Introduce CCS at synfuels plants producing 30 million barrels per day from coal (200 times Sasol), if half offeed stock carbon is available for capture	Increased CO ₂ emissions, if synfuels are produced <i>without</i> CCS
	Geological storage	Create 3500 Sleipners	Durable storage, successful permitting

Wedges #9 - #15 (out of 15)

Т

Т

Т

	Option	Effort by 2054 for one wedge, relative to 14 GtC/year BAU	Comments, issues
Nuclear Fission	9. Nuclear power for coal power	Add 700 GW (twice the current capacity)	Nuclear proliferation, terrorism, waste
Renewable Electricity and Fuels	10. Wind power for coal power	Add 2 million 1-MW-peak wind mills (50 times the current capacity) "occupying" 30x10 ⁶ ha, on land or off shore	Multiple uses of land because windmills are widely spaced
	11. PV power for coal power	Add 2000 GW-peak PV (700 times the current capacity) on 2x10 ⁶ ha	PV production cost
	12. Wind H_2 in fuel-cell car for gasoline in hybrid car	Add 4 million 1-MW-peak windmills (100 times the current capacity)	H_2 safety, infrastructure
	13. Biomass fuel for fossil fuel	Add 100 times the current Brazil or U.S. ethanol production, with the use of 250×10^6 ha (1/6 of world cropland)	Biodiversity, competing land use
Forests and Agricultural Soils	14. Reduced deforestation, plus reforestation, afforestation and new plantations.	Decrease tropical deforestation to zero instead of 0.5 GtC/year, and establish 300 Mha of new tree plantations (twice the current rate)	Land demands of agriculture, benefits to biodiversity from reduced deforestation
	15. Conservation tillage	Apply to all cropland (10 times the current usage)	Reversibility, verification

Global cost curve of GHG abatement opportunities beyond business as usual

Marginal Abatement Costs for Cooling Scenarios

coolclimate.berkeley.edu/maps

Policy Analysis

pubs.acs.org/est

Spatial Distribution of U.S. Household Carbon Footprints Reveals Suburbanization Undermines Greenhouse Gas Benefits of Urban Population Density

Christopher Jones*,[†] and Daniel M. Kammen*,^{†,‡,§}

[†]Energy and Resources Group, [‡]Goldman School of Public Policy, and [§]Department of Nuclear Engineering, University of California, Berkeley, California 94720, United States

http://coolclimate.berkeley.edu/maps We have seen access rate up to 100,000/day

What do they do first? They check their own community ... & compare to neighbors