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A B S T R A C T   

The deployment of renewable electricity and electric vehicles (EVs) provides a synergistic opportunity to 
accelerate the decarbonization of both China’s power and transportation sectors. Here, we evaluate the potential 
impacts of EVs by utilizing the SWITCH-China model designed to meet emissions constraints within its power 
sector while integrating the electrified transportation sector. We focus on how various EV stocks, and charging 
strategies (unmanaged versus smart charging) impact the power sector, in terms of generation and hourly grid 
operation, the capacity mix, and achieving the Paris Agreement goals. Large-scale deployment of EVs increases 
the need for generation capacity, while the implementation of smart charging requires 6.8%–14% less additional 
storage capacity. We calculate that power system integration costs to incorporate EVs range from $228 - $352 per 
EV. We show that a smart charging strategy saves between $43 and $123 per vehicle more annually in 2050 than 
a case with the same EV stock where the charging is unmanaged. Our results suggest that a 140 GW annual 
growth of renewables from 2020 to 2050, coupled with an aggressive EVs deployment using smart charging can 
put China solidly on a path to meet its ambitious carbon cap targets.   

1. Introduction. 

China committed to peak carbon emissions by 2030 and at least 20% 
of non-fossil fuel energy in total energy consumption by 2030 (Gambhir 
et al., 2015; Huo and Wang, 2012; Li and Yu, 2019) (NDRC, 2015a). The 
power sector is the largest source of CO2 emissions in China at 3.55 
GtCO2/year in 2015, accounting for 38% of national CO2 (International 
Energy Agency, 2018). CO2 emissions from the Chinese transportation 

sector accounted for 9% of national emissions in 2014 (Gambhir et al., 
2015). For comparison, transportation accounts for 34% of greenhouse 
gas emissions in the United States, with nearly 800 vehicles per 1000 
inhabitants, compared to 173 cars in China and 505 cars in the EU (EPA, 
2019). With on-road emissions having grown by a factor of roughly five 
since 2002, and with annual increases of 2.8%/year, the emissions from 
the transportation sector will reach 1.7 Gt CO2 (20% of forecast total 
emissions) by 2050 (IEA, 2017). 
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The national electricity demand of EVs was driven by the total EV 
stock, vehicle use intensity, vehicle energy efficiency, and the charging 
efficiency of batteries. China remains the world’s largest electric car 
market, with accumulated 3.44 million electric cars by June 2019 
(CPGPRC, 2019). China plans to deploy a total of 5 million EVs by 2020 
(MIIT, 2012), and the corresponding sales target of new energy vehicles, 
including EVs and hydrogen vehicles, will be 25% of new sales by 2025 
(MIIT, 2017). Electricity demand from EVs was predicted to reach nearly 
290 TWh by 2030, and the increased penetration of EVs may become 
one of the driving factors to build new generation capacity (IEA, 2019). 
Besides, China is increasing investment in renewable electricity to 
transfer to a low carbon power system. Thus, electrification of the 
transportation sector is one promising way to improve the security of 
energy supply and to address climate targets through an accelerated 
transition towards sustainable energy resources. If coupled with a 
long-term capacity expansion model of the power system, the large-scale 
deployment of EVs would have a significant effect on the transportation 
and the power sectors (Richardson, 2013). 

Many studies have investigated the pathway to decarbonize the 
power sector. Firstly, (He et al., 2016) proposed the SWITCH-China 
model to decarbonize China’s power sector, and found that China 
could achieve the 2 ◦C target by optimizing the electricity generation 
mix. Ma et al. (2019) employed a structural decomposition analysis 
based on an input-output subsystem model to explore sources of emis
sion increases in China’s power sector from 2007 to 2015. They 
concluded that promoting the development of non-fossil energy power 
may make national CO2 emissions peak and begin to decrease before 
2030. Chen et al. (2018a) presented a capacity expansion model opti
mizing investment decisions and full-year, hourly power balances 
simultaneously, with considerations of storage technologies and policy 
constraints. Lastly (Lin et al. (2019)) developed an analytical model with 
four scenarios to examine the resource, economic, and institutional 
implications of replacing even retiring coal generation in China by 2040. 
They concluded that no new unabated coal was generated after 2020. All 
existing coal generation must be retired, at least by the end of its original 
depreciation schedule. 

The rapid growth of EVs population could make the transportation 
sector a significant contributor to national CO2 emissions. The future 
growth of vehicle stock, energy demand and CO2 emissions from China’s 
transportation sector are analyzed by (Gambhir et al., 2015; Huo and 
Wang, 2012; Li and Yu, 2019). (Ou et al., 2010) concluded that the 
implementation of measures that support high-efficiency electric vehi
cles could reduce 15.8% and 27.6% for life cycle energy demand and 
greenhouse gas emissions by 2050. Huo et al. (2010) found that more 
significant CO2 reduction could be expected if technologies improve, 
and the share of non-fossil electricity increases significantly. Further, 
many studies focused on vehicle-grid integration (VGI) that links the 
transportation sector with the power sector to provide comprehensive 
benefits. Past studies indicate that VGI can provide the power system 
substantial flexibility, reduce peak demand, load balancing, frequency 
regulation, and participate in ancillary services. Xu et al. (2016) pro
posed three levels (provincial, municipal, and charging stations) PEV 
charging strategy to reduce system peak demand and charging costs. 
Zhang et al. (2017) established an aggregate model of vehicle-to-grid 
(V2G) fleet that forecasts energy and power constraints of the entire 
V2G fleet. In doing so, VGI could increase the penetration of renewable 
energy generation, and allow higher utilization of existing generation 
capacity and infrastructures. For instance, smart charging could reduce 
the peak demand and curtailment rates of renewable electricity (Chen 
et al., 2018b), and EVs have significant potential to participate demand 
response in a cost-efficient way (Jian et al., 2018), and reduce the need 
to build reserve capacity and generation capacity (Wolinetz et al., 2018). 

The majority of the above studies focus either on the transportation 
sector, or on the power sector, but much more is needed to concretely 
describe the details of linking the transportation and the power sectors 
in long-term decarbonization planning.. This work aims to assess the 

large-scale deployment of EVs in China’s power sector, considering 
differences in the mix of power generation and generation capacity, 
combined emissions and costs, transmission line capacity, and hourly 
operation of the grid. This work is expected to provide valuable insight 
about the possible environmental and economic benefits of EVs, and 
how to exploit the value of EVs by planning the power system and 
applying the charging strategy (unmanaged charging and smart 
charging strategies). This work focuses on the following questions: how 
would China’s power system change given the large-scale deployment of 
EVs under more stringent CO2 emissions constraints? How would the 
combined CO2 emissions of the transportation and the power sectors? 
What are the integration costs and costs-saving to incorporate those 
changes in China’s power system? 

This study proposed a comprehensive evaluation path that utilizes 
the large-scale EVs to support the decarbonization process of China’s 
power and transportation sector in a cost-efficient way. Based on the 
development path of EVs, this study first simulates the daily charging 
profile of EVs and temporal availability of EVs connecting the grid by the 
province through the Monte Carlo method. After that, we updated the 
SWITCH-China model that is a long-term capacity expansion model, and 
explored the pathway of the power system integrating the EVs under 
various scenarios with carbon emission constraints, charging strategies, 
participation rates, and EVs population from 2020 to 2050. Finally, the 
mixes of generation capacity and power generation, transmission ca
pacity, and annualized costs of the power system, the combined emis
sions, and the levelized cost of driving (LCOD) of per EV are quantified. 

The paper is organized as follows. Section 2 describes the SWITCH- 
China model, the transportation system, methodologies of simulating 
the charging dynamic of EVs, and scenarios definition. Sections 3 ana
lyzes the scenario results from energy, economic, and environmental 
perspective. The discussion and conclusion are provided in Section 4. 

2. Methodology, data and scenarios 

Fig. 1 illustrates the updated SWITCH-China model structure with 
the newly integrated the transportation system component. This section 
begins with a description of the transportation system, continues with a 
breakdown of the SWITCH-China model, as well as the methodology 
behind the EV charging simulation, and ends with scenario definitions. 

2.1. Transportation system model 

The transportation system model simulates daily charging behaviors 
of EVs and charging availability connecting to the grid of EVs from 2020 
to 2050, under different EV adoption and participation rates scenarios. 
The national daily charging profile and temporal availability of EVs 
were driven by the EV stock, driving patterns, vehicle use intensity, 
vehicle attributes, charging strategies, and participation rates of smart 
charging. The EV population are based on the same vehicles stock pro
jections but differ in the share of EVs versus internal combustion engine 
vehicle (ICEV), as shown in Table 3. We summarize driving patterns and 
the vehicle use intensity (Supplementary Figure S1.4; Table S1.5) 
(BTRC, 2018), in which it is assumed that Beijing’s driving behaviors are 
representative of other provinces. The EV attributes, including vehicle 
kilometer travel (VKT) (km/day), fuel economy (kWh/km), capacity 
(kWh), and charging efficiency, are presented in (Supplementary 
Table S1.4; Table S1.5). The charging strategies and participation rates 
of smart charging are introduced in Section 2.3. Finally, the outputs of 
the transportation system model are charging power boundaries (kW) 
and accumulated charging energy demand boundaries (kWh) (Section 
2.3.3). These outputs are used to construct charging scenarios for EVs in 
the SWITCH-China model. Improvement of technologies, decreased 
vehicle use intensity, and high EV adoption scenarios are considered in 
our scenario. For instance, the fuel economy of private LDVs will 
decrease by 5% every ten years. The VKT of private LDVs will decrease 
over time, because the construction of highways and urban railways and 
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the difference in people’s choices of transport mode to fulfill their 
changing travel needs (Huo et al., 2012). The vehicle stocks of private 
LDVs, commercial LDVs (taxis, business LDVs), trucks, buses (public 
transport, heavy duty passenger buses) will be 557.7 million, 24.5 
million, 36.5 million and 4.4 million by 2050, respectively. The EV 
populations will reach roughly 349 million (Huo and Wang, 2012), with 
a corresponding energy demand of 698.9 TWh (5.8% of total electricity 
demand in 2050) in the aggressive EV scenario, as shown in Table 1. 

2.2. The SWITCH-China model 

The SWITCH-China model is a capacity expansion planning tool of 
the power system. It optimizes capacity expansion of conventional and 
renewable generation technologies, storage systems, and transmission 
systems coupled with hourly load demand and renewable energy output 
profiles while meeting the projected electricity demand from 2020 to 
2050 (He et al., 2020; Johnston et al., 2019; Sanchez et al., 2015). To 
comprehensively study the impacts of integrating the power system in 
its current state with an electrified transportation sector, and to project 
towards future decarbonization, the SWITCH-China model is adopted to 
simulate the electricity power system in both spatial and temporal res
olution. For the temporal resolution, the optimization horizon is divided 
into four investment periods: 2016–2025, 2026–2035, 2036–2045 and 
2046–2055. Specifically, the SWITCH-China model run with 12 months 
per period, two days per month, and six sampled hours per day. 
Geographically, the model divides the entire power system into 32 load 
zones that can be connected through existing inter-provincial trans
mission lines. The SWITCH-China model simultaneously optimizes in
vestment decisions and operation dispatch decisions to minimize the 
total costs of producing and delivering electricity, while satisfying a 

series of constraints that includes power balancing constraints, 
convention unit commitment, renewable resource constraints, planning 
and reserve marginal constraints, and policy constraints, as shown in 
Fig. 1. The detailed information is shown in the Appendix. A and sup
plementary information. 

2.3. Model charging dynamics for EVs in China 

2.3.1. Charging dynamics of EVs in China 
The daily charging profile of EVs mainly depends on arrival time, and 

departure time from a charging station, VKT, state of charging (SOC), 
charging strategies, and the availability of charging infrastructure. We 
investigate the driving behaviors of vehicles through existing literature 
(BTRC, 2018; Chen et al., 2018b; Jian et al., 2018; Sun et al., 2014; Xu 
et al., 2016). The probability distribution arrival/departure times for 
private LDVs, buses, taxis, commercial LDVs are summarized in (Sup
plementary Table S1.4; Table S1.5). 

The average daily travel distance of buses is roughly 160 km and 
should remain constant through to 2050, and the normal operation time 
of buses starts between 05:30–06:00 and ends between 22:00–23:00. 
Taking a BYD K8 bus as an example, the maximum mileage of electric 
buses is roughly 180–200 km after charging 8 h during the night. It is 
reasonable to assume that the charging periods of electric buses are most 
likely to be 10:00–16:30 (daytime) and 23:00–05:30 (nighttime). 

In China, driver shift duration and daily frequency (a single driver or 
two drivers who trade-off) significantly influence EV charging dy
namics. Fifty-five percent of taxis are driven by individual drivers, while 
forty-five percent of taxis are driven by two drivers. The average daily 
distance of taxis with a single driver is nearly 240 km, and it is 400 km 
for taxis with two drivers (Sun et al., 2014). The shift start/end usually 
occurs at 06:00 and 18:00. Drivers must charge before they shift the 
taxis to guarantee the SOC is enough for the next driver. It is assumed 
that one charge per day for taxis with a single driver occurs between 
20:00 and 22:00. For the taxi with two drivers, it is assumed that taxis 
will charge between 2:00 to 4:00, and between 11:30 and 14:30. 

Electric light-duty commercial vehicles (LDCV) are often part of a 
company or government fleet. China had the largest electric LDCV fleet 

Fig. 1. Schematic diagram of the Switch-China model integrated with the transportation system.  

Table 1 
The electricity demand of EVs (TWh).  

Scenario 2020 2030 2040 2050 

Moderate EV Scenario 27.6 111.7 235.5 374.7 
Aggressive EV Scenario 27.6 191.0 429.5 698.9  
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worldwide (138,000 vehicles) in 2018. The average daily travel distance 
of LCVs is 40–50 km, and the normal operation time of LCVs is from 
9:00–18:00. The parking distribution is derived from studies (Jian et al., 
2018). 

According to a statistical analysis of private cars (BTRC, 2018), most 
people use vehicles in Beijing to commute, leaving home between 6:00 
and 9:00 and arriving at their workplace between 07:00 and 10:00. 
Detailed information can be found in Supplementary. Figure S1.4. The 
average daily travel distance of private LDVs is roughly 40 km, which 
translates to the daily electricity consumption of 4.5 kWh - 9 kWh. 

2.3.2. Unmanaged charging 
It is assumed that an EV starts charging as soon as it is plugged in the 

grid under the unmanaged charging scenario. The accumulated energy 
demand is a fixed trajectory where the lower energy bound is equal to 
upper energy bound. Flexible charging is not allowed since the charging 
profiles have to strictly follow the accumulated energy demand 
trajectory. 

2.3.3. Smart charging 
Smart charging can occur in a centralized way through aggregators 

that directly controls the charging behaviors of EVs without the 
involvement of EV owners. When EVs participate in the smart charging 
program, their end of energy demand is treated as a required energy 
target. This requirement ensures that the presence of charging man
agement will have no impact on the mobility of EVs. The following EVs 
are regarded as the controllable EV 1) electric buses at night; 2) private 
LDVs parked in lots at workplaces during the daytime; 3) private LDVs 
parked at homes during the nighttime; 4) single-driver taxis parked 
when off-duty, while all other EV types are regarded as unmanaged EVs. 
The charging flexibility of a given EV can be modeled by its accumulated 
charging demand bounds and charging power bounds. This is similar to 
the methodology (Chen et al., 2018b; Zhang et al., 2017). It is assumed 

that controllable EVs plugged-in at the same time with unmanaged EVs, 
but the aggregators can control the time of active charging and charging 
power as long as their end of energy demand is the same with that of the 
unmanaged charging. 

Fig. 2 illustrates the daily aggregated cumulative charging demand 
bounds. The upper energy bound corresponds to unmanaged charging 
when active charging begins immediately. The lower energy bound 
corresponds to delaying active charging until the last possible moment 
while still reaching the same energy target. Within the boundaries of 
these two curves, any increasing trajectory can be achieved by managing 
charging behaviors while still meeting the energy target, charging 
power limits of EVs. In contrast, the fixed boundary represents un
managed charging that does not allow the use of any flexibility mea
sures. Smart charging allows for the possibility to delay charging while 
delivering the same amount of energy as unmanaged charging by the 
end of the day. 

2.3.4. Integrating EVs charging load into the SWITCH-China model 
Virtual storage is created in each province to represent the aggre

gated charging profile and charging availability of EVs. The charging 
energy demand is aggregated to a charging trajectory between two cu
mulative charging demand bounds that determine how much charging 
power can be dispatched in a given time. The daily aggregated charging 
loads are scaled to construct monthly profiles by repeating the full day of 
hourly charging loads. Similarly, the monthly charging loads and con
straints are scaled to create an annual data set for the SWITCH-China 
model. Notably, there are no differences in the charging behaviors of 
EVs across each province, but there are differences in the EV population. 
Finally, the feasible trajectories of charging power are regarded as in
puts in the SWITCH-China model by province, and period. 

Fig. 2. Average Energy Demand Bounds on Cumulative Charging Trajectories under Aggressive EV Adoption Scenario with Different Participation Rates. The 
participation rate in smart charging also has effects on the energy demand curve, so we set up two scenarios: a 50% participation rate of EVs and a 100% participation 
rate of EVs. The 50% means that only one half of EVs are available to do the smart charging mode, and a 100% means that all EVs can do smart charging mode. 
Although the participation rate of smart charging is different, the cumulative charging demand at the end of the day is the same. 
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2.4. Scenario descriptions 

Our scenarios form an assessment of the impacts of decarbonizing 
the power sector while varying nationwide EVs deployment from 2020 
to 2050, as shown in Table 2. Within the EVs component to our analysis, 
our variables of interest include EV adoption levels, charging strategy, 
the participation rate in smart charging, and carbon emissions con
straints. The scenarios are: First, business as usual (BAU), which assumes 
the continuation of existing policies and future renewable cost trends. 
Second, carbon cap constraints (C70), which implies a carbon cap of 
70% lower than the 2014 emissions level by 2050, as shown in Table 4. 
Third, carbon cap constraints with EV adoption scenario (C70-EV), 
which assumes different EV adoption levels and charging modes sce
narios. Notably, the “C70” scenario is consistent with the 2◦C scenario 
during given the assumption that other sectors reduce their emissions in 
parallel with the CO2 reductions from the power sector, as shown in 
Table 4. This is also consistent with China’s recent announcement of 
achieving carbon neutrality by 2060. Annual car ownership prediction is 
based on (Huo and Wang, 2012). The EV adoption scenarios are based 
on the same vehicles stock projections but differ in the share of EVs 
versus internal combustion engine vehicles (ICEVs), as shown in Table 3. 
The aggressive EV deployment target in 2050 is similar to the assump
tions in (NDRC, 2015b), and the EV target for the moderate EV 
deployment scenario is nearly half as much as the aggressive EV 
deployment scenario. To better understand the benefits of smart 
charging, the different participation rates of smart charging scenarios 
are used to explore how to coordinate aggressive EVs and the power 
sector towards the decarbonization of the power system. 

3. Results 

3.1. Annual grid impacts 

3.1.1. Installed capacity and generation 
Fig. 3 shows that the cumulative installed capacity by energy source 

in 2050. Across scenarios, solar PV dominates generation capacity: the 
largest installed capacity, at 3114 GW (44.2% of total capacity), 
occurring in the “C70-AEV-UC” scenario, compared with 187 GW (6.7% 
of total capacity) in the “BAU” scenario. The second most used tech
nology is wind, with capacity between 788 GW (28% of total capacity) 
in the “BAU” scenario and 1922 GW (25.6% of total capacity) in the 
“C70-AEV-UC” scenario. Capacity of hydropower plants does not expand 
because of resource limitations, so hydropower remains stable at 316 
GW in all scenarios. As a baseload energy source, nuclear is competitive 
in our scenarios because of its high capacity and zero-emissions. How
ever, nuclear capacity accounts for less than 6% of total capacity 
considering public security concerns. The capacity limits of nuclear is 
consistent with nuclear development trend in (IEA, 2015). There is a 
significant reduction in coal capacity from 1140 GW in the “BAU” sce
nario to 656 GW in the “C70” scenario by 2050. The rest of the coal 
capacity is used to provide for backup usage. The large-scale renewables 
electricity leads to dramatically increase in storage capacity from 32 GW 
in the “BAU” scenario to 551 GW-717 GW in the scenarios with “C70” 
and both with and without EVs, in order to incorporate flexibility in 
utilizing variable renewable resources. For instance, the ratio of solar 
capacity to storage capacity is roughly 5:1 (“C70”), which suggests that 
the installed capacity of storage increases as the CO2 emissions con
straints strengthen. Similarly, gas-fired generation capacity goes up 
sharply in the last period to meet the strong CO2 emissions constraints, 
though fuel price of natural gas is higher than coal price over the period. 

Fig. 4 shows the annual generation by energy source in 2050. In the 
“BAU” scenario, most of the energy generated in 2050 comes from coal 
(60% of total generation), while in the “C70” scenarios, coal generation 
makes up less than 6% of total generation, in order to satisfy reductions 
in CO2 emissions. In contrast, under the “C70” scenarios, the total non- 
fossil generation, at around 9000 TW-hours (TWh), accounts for about 
64% of total generation by 2050. The share of gas-fired generation ca
pacity relative to the total installed capacity increases from zero in the 
“BAU” scenario to 13.2% in the “C70” scenario, which suggests that gas- 
fired plants will be competitive compared with coal generation, coming 
from a lower CO2 emissions intensity and a higher flexibility in gas. 

The obvious impact of smart charging is on the quantity and type of 
installed capacity and generation. For the generation capacity, charging 
strategies has a negligible impact on the renewable capacity, as applying 
smart charging would reduce the need for new generation capacity by 

Table 2 
Scenario descriptions.   

Business as 
usual (BAU) 

Carbon cap constraints (C70) 

Research periods Base year: 2016; Investment period: four investment periods 
with every ten years 

Existing policies The Chinese “Five-year plan” from 2016 to 2020; No new coal- 
fired power plants after 2020 

Future renewable 
cost trends 

The rapid decrease in capital costs of renewable energy (solar, 
wind) and storage system. The detailed information is shown 
in the supplementary. 

Carbon emissions 
constraints 

No 70% reduction in electricity sector 
emissions from 2014 level by 2050 (IEA, 
2017) 

EV adoption levels No Moderate EV (“MEV”) deployment 
scenario: around 174 million EVs will 
come in the road by 2050. 
Aggressive EV (“AEV”) deployment 
scenario: around 349 million EVs will 
come in the road by 2050. 

Charging modes No Unmanaged charging (“UC”): EVs charge 
immediately after being plugged into the 
grid. 
Smart charging (“SC”): Power system 
operator directly optimizes EV’s charging 
time and power. 

Participation rates No The Participation rate of 50% of smart 
charging (PR50): 50% controllable EVs can 
participate in smart charging program. 
The Participation rate of 100% of smart 
charging (PR100): 100% controllable EVs 
can participate in smart charging program. 

Note: The scenario names are the “BAU”, “C70”, “C70-MEV-UC”, “C70- 
MEV–SC–50”, “C70-MEV–SC–100”, “C70-AEV–SC–50”, “C70-AEV-UC”, and the 
“C70-AEV–SC–100” scenario. For instance, the “C70-MEV-UC” scenario is the 
scenario that uses carbon emissions constraints, moderate EV adoption level, 
and an unmanaged charging strategy. The “C70-MEV–SC–100” scenario is the 
scenario that uses carbon emissions constraints, moderate EV adoption level, 
and a 100% participation rate of smart charging. 

Table 3 
Projected Electric Vehicle Stock Sizes (million units).  

Scenario Type 2020 2030 2040 2050 

Moderate Scenario Private LDVs 3.77 39.03 99.72 167.31 
Buses 0.29 0.53 0.83 1.2 
Taxis 0.15 0.35 0.62 0.97 
Commercial LDVs 0.44 2.12 3.34 4.42 

Aggressive Scenario Private LDVs 3.77 78.06 199.44 334.62 
Buses 0.29 0.64 1.11 1.55 
Taxis 0.15 0.7 1.23 1.94 
Commercial LDVs 0.44 4.23 6.67 11.04  

Table 4 
National CO2 Emissions Targets for the Power Sector (million tons CO2).  

Scenario 2020 2030 2040 2050 

BAU – – – – 
C70 3780 3524 2046 1322  
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around 1% relative to unmanaged charging scenarios. In contrast, under 
the “C70-MEV” scenario, imposing smart charging with a 100% partic
ipation rate would decrease storage capacity by around 9% by 2050, 
compared with the unmanaged charging strategy. Under the “C70-AEV”, 
storage capacity would decrease further to 615 GW by 2050, 14% lower 
than the unmanaged charging strategy. Similarly, we find that smart 
charging also builds 3%–14% less gas-fired power capacity, resulting 
from a lower peak load than in the unmanaged charging scenarios. 

Furthermore, a 100% participation rate in smart charging builds less 
capacity than a 50% participation rate of smart charging. 

From a national generation perspective, compared with the “C70” 
scenario across the different EV adoption level, deploying EVs would 
increase the national generation by 2.8%–7.2%, which is larger than just 
the forecasted EV charging demand due to transmission losses and 
charging efficiency losses. Moreover, smart charging strategies result in 
less generation than unmanaged charging. This is mainly coming from a 

Fig. 3. The cumulative electricity capacity by energy source in 2050.  

Fig. 4. The electricity generation by energy source in 2050.  
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reduction in storage generation and gas generation. Specifically, under 
the “C70-AEV–SC–100” scenario, the smart charging leads to the highest 
reduction by around 19% compared with unmanaged charging. 

3.1.2. Electricity transmission system 
Fig. 5 shows the cumulative inter-provincial/regional transmission 

line capacity by period. One of the major challenges to integrate RE, and 
a motivation for the development of cross-provincial transmission, is 
that the RE resources are located far from the load centers, such as the 
eastern coastal region. As source-rich areas are not able to consume all of 
what they generate locally, this enhances the need for cross-provincial 
transmission. To decarbonize China’s power sector and to meet higher 
load demand along the east coast of China, transmission line capacity 
needs to be expanded aggressively. Under the “C70” scenario, the cu
mulative transmission capacity increases from 736 GW in 2020 to 1774 
GW in 2050, around 44% higher than in the “BAU” scenario by 2050. 
While the large-scale deployment of EVs would lead to increasing 
transmission capacity by about 3.3%–5.4% relative to a “No EV” sce
nario, charging strategies have a negligible impact on transmission line 
capacity expansion. With the construction of more ultra-high voltage 
UHV transmission lines, inter-regional and inter-provincial transmission 
could play a great role in the integration of RE into a resource-load- 
unbalanced area. 

In contrast, charging strategies have a significant impact on local 
T&D capacity. As shown in Fig. 6, under the “C70-MEV–SC–50” sce
nario, systems need to build 345 GW of local T&D capacity, which is 
7.5% lower than in the unmanaged charging scenario. Furthermore, if 
there is a 100% participation rate in smart charging, the system further 
builds even less 13.5% local T&D capacity, at 13.5% less than in the 
unmanaged charging. Similar results also occur in the aggressive EV 
adoption scenario. This is because smart charging would result in a 

reduction in the evening peak electricity demand as described in Section 
3.2. 

3.1.3. Combined CO2 emissions 
A comparison of national CO2 emissions of the power sector and the 

transportation sector, as shown in Table 5 and Table 6. There is a sig
nificant reduction in CO2 emissions in the “C70” scenario: the 2050 
emissions level under the “BAU” scenario is at around 6.7187 billion 
tons CO2 (41% above the 2014 level), and the 2050 emissions level 
under the “C70” scenario is at 1.322 billion tons CO2 (70% below the 
2014 level). The main reason is that non-fossil generation increases from 
27.6% in the “BAU” scenario to 64% in the “C70” scenario. Notably, the 
SWITCH-China model minimizes total costs by following trajectories of 
carbon emission constraints. Therefore, the carbon budget is the same 
under the same carbon emission constraints no matter what EV 
deployment scenarios are used. However, the CO2 emissions from the 
transportation sector would have a significant reduction resulting from 
switching from internal combustion engine vehicles (ICEVs) to EVs. 
Under various EVs adoption levels, if these EVs are alternating by 
gasoline-driven vehicles, the gasoline-driven vehicles will emit corre
sponding CO2 emissions. For instance, the moderate EVs adoption level 
would make a substantial contribution to reducing CO2 emissions of 
about 380.2 Million ton (Mt) from the transportation sector. The 
aggressive EV adoption level further reduces CO2 emissions around 
725.3 Mt. Thus, across the board, large-scale deployment of EVs can 
significantly decrease overall CO2 emissions of the power and trans
portation sectors in the future. 

Table 7 show the comparison of CO2 emission intensity (kg CO2/ 
MWh) of the power system by 2050. The CO2 emissions intensity of the 
power system decrease from 476.9 kg CO2/MWh under the “BAU” 
scenario to 93.65 kg CO2/MWh under the “C70” scenario. First, the 

Fig. 5. Cumulative Transmission Line Capacity by Scenario over the Period. The transmission line capacity accounts for voltage level above 500 kV, including inter- 
provincial/regional transmission lines. 
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national power generation would increase resulting from additional 
electricity demand of EVs as described in Section 3.1.1. Thus, deploy
ment of EVs would decrease CO2 emission intensity than does in the “No 
EV” scenario. Second, a smart charging would bring more CO2 emission 

intensity than that under the unmanaged charging scenario. For 
instance, under the “C70-MEV-UC” scenario, smart charging with 50% 
and 100% participation rate increases CO2 emission intensity by around 
2.1% and 3.5%, respectively. Because a smart charging results in a more 
stable national load profile, facilitating the coal generation by alter
nating gas generation, and reducing storage generation. This would lead 
to less national generation compared with unmanaged charging sce
nario, as described in Section 3.1.1. Therefore, the CO2 emission in
tensity would increase resulting from imposing smart charging on EVs. 

Table 8 show the comparison of the power system CO2 emissions 
intensity (g CO2/km) per EV. At the national level, the CO2 emission 
intensity per kilometer of EV are 10.84–11.23 g CO2/km, which is 
significantly less than the intensity of CO2 emissions for gasoline-driven 
vehicles (132 g CO2/km). On the other hand, a higher participation rate 

Fig. 6. New Local Transmission and Distribution Capacity by Scenario over the Period. The local transmission and distribution (T&D) system is built to serve the 
peak load in each period. The item “legacy” presents the existing local transmission and distribution capacity. This figure shows that how much local T&D capacity 
need to be built in each period, rather than cumulative capacity by period. 

Table 5 
National CO2 Emissions from the Transportation Sector (Billion ton CO2).  

EV adoption levels 2020 2030 2040 2050 

Moderate 0.0301 0.1300 0.2469 0.3802 
Aggressive 0.0301 0.2337 0.4635 0.7253 

Note: Under the EV adoption levels, it is assumed that these EVs are alternating 
by gasoline-driven vehicles, the gasoline-driven vehicles then will emit corre
sponding CO2. 

Table 6 
National CO2 Emissions from the Power Sector (Billion ton CO2).  

Scenario 2020 2030 2040 2050 

BAU 4.056 4.330 5.374 6.7187 
C70 3.780 3.524 2.046 1.322  

Table 7 
Average CO2 emissions of the power system in 2050 (kg/MWh).  

Charging strategy Participation rate/% BAU C70-MEV C70-AEV 

No EV 0 476.9 93.65 93.65 
No control 0 – 90.16 87.36 
Smart charging 50 – 90.70 88.11 

100 – 91.14 89.96  

Table 8 
Average CO2 emissions of the power system associated with EV and ICE vehicle 
(g CO2/km).  

Charging 
strategy 

Participation rate/ 
% 

BAU C70- 
MEV 

C70- 
AEV 

ICEVa 

No EV 0 57.23 11.24 11.24 132 
No control 0 – 10.82 10.48 – 
Smart charging 50 – 10.88 10.57 – 

100 – 10.94 10.80 –  

a By 2050, most electricity vehicle costs are approximately equal to ICE 
drivetrains, at $14200. It is assumed that lifetime of gasoline-driven vehicles is 
12 years, and the VKT of EVs and ICEVs is 13,600 km, and fuel consumption of 
EVs and ICEVs are 12 kWh/100 km and 6 L/100 km, respectively, and that the 
gasoline price is 1 $/L, as a base fuel scenario. The fuel emission factor of gas
oline is 2.2 kgCO2/L. The O&M costs of EVs and ICEVs are account for 8% of 
purchase costs (Gambhir et al., 2015). 
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in smart charging strategy EVs results in higher CO2 emissions intensity 
for the same level of EV adoption. For instance, in the “C70-MEV-UC” 
scenario, the CO2 emissions intensity associated with EVs are 10.84 g/ 
km, which is 3.6% lower than the value in the “C70-MEV–SC–100” 
scenario. The CO2 emissions intensity of vehicle highly correlates with 
the CO2 emissions intensity of the power system, so the impacts of 
charging strategies on CO2 emissions intensity of one vehicle are similar 
to CO2 emissions intensity of the power system. 

3.1.4. Combined costs 
Table 9 shows to what degree the annualized costs of the power 

sector change with the carbon emissions constraints, charging strategies, 
and participation rates in a smart charging. Firstly, as EVs are integrated 
into the power sector, annualized costs increase by 3.0–9.6% in 2050 as 
capacity and generation increase to meet the additional charging de
mand of EVs. Specifically, an unmanaged charging strategy leads to the 
larger increase in the annualized costs, while a smart charging strategy 
with a 100% participation rate results in the lowest total costs, and a 
smart charging with a 50% participation rate also helps to mitigate the 
additional costs. Notably, in order to meet the carbon emissions target, 
we find that by 2050 China’s power system costs will be at 98.6 $/MWh 
under the “C70” scenario, 49.3% higher than in the “BAU” scenario. 
Moreover, system average energy costs will be at 108.1 $/MWh as a 
result of infrastructure needs to match an aggressive deployment of EVs, 
as shown in Table 10. This cost includes a largely carbon-free electricity 
sector, whose benefits are very large compared to the ‘electricity only’ 
BAU scenario. 

Fig. 7 explains what contributes to the changes in total costs. A 
carbon emission constraints scenario would change the costs structure 
that switch from coal fuel costs to more capital costs. The fuel costs of 
coal decrease 331.4 billion in the “BAU” scenario to 28.3 billion in the 
“C70” scenario. The capital costs from solar, wind and storage account 
for 33.3% of total costs by 2050 in the “C70” scenario, compared with 
9% in the “BAU” scenario. From cost-saving of smart charging 
perspective, compared with unmanaged charging, smart charging costs 
9–24 $ billion less annually in the moderate EV adoption scenario, even 
27–40 $ billion less annually in 2050 in the aggressive EV adoption 
scenario. The cost reduction is mainly driven from a decrease in fuel 
costs, capital costs of storage, solar and gas-fired power plants, and local 
T&D build costs. For instance, smart charging would result in a reduc
tion in fuel costs of gas, at 6.9 billion (30.9% of total cost reduction) in 
the “C70-MEV–SC–100” scenario compared with the “C70-MEV-UC” 
scenario. This is consistent with the results in Section 3.1.1: compared 
with unmanaged charging, smart charging decreases the utilization of 
gas-fired generation and of storage capacity. Besides, storage capital 
costs (2.3 billion), local T&D costs (6.4 billion), and solar capital costs 
(1.6 billion) contribute to the left cost reductions. It is notable that un
managed charging leads to an increase in fuel costs, because the EVs 

charging peak occurs within peak load hours, when gas-fired power 
plants with a quick start-up and flexible ramping are to be dispatched. In 
contrast, smart charging can offset the charging demand to off-peak 
hours in order to smooth the load profile. Thus, this suggests that 
increasing the flexibility of the power system by optimizing the charging 
demand of EVs can significantly reduce annual system costs. 

Given an EV deployment scenario, it is necessary to figure out the 
combined costs from both the power system and the transportation 
sector in order to analyze the cost benefits of EVs versus ICEVs and cost 
benefits of smart charging versus unmanaged charging. We define the 
annual system integration costs as the cost of integrating a particular 
amount of EVs. As shown in Table 11, the annual integration costs of the 
power system range from 211 to 352 $ per EV across various EV adop
tion levels and participation rates. One notable metric for analyzing the 
tradeoff between smart charging and unmanaged charging is the 
implementation costs of a smart charging that is the cost of the on-board 
metering device and the wireless interconnection. We observe that the 
reduction in system integration costs of power system is always higher 
than the implementation cost for smart charging strategy. For instance, 
incorporating a smart charging strategy decreases integration costs by 
12.2–29.6% relative to an unmanaged charging strategy, and the saving 
costs per vehicle decrease as the participation rates in smart charging 
grows. Therefore, strategies that prioritize saving system costs should 
deliver subsidies to drivers who participate in smart charging programs, 
and should build both more charging infrastructure and upgrade local 
transmission systems to improve the ability for EVs to respond to de
mand, ultimately increasing their market share. 

Another way we can summarize the economic impact of EV adoption 
is by using the updated levelized cost of driving (LCOD) ($/km) of per 
EV in comparison with the LCOD per gasoline-driven vehicle (See Ap
pendix B). As shown in Table 12, in all unmanaged charging scenarios, 
EVs have a 2.05%–2.25% higher LCOD than ICEVs in the base fuel price 
scenario, whereas the LCOD of EVs is roughly 4.4% lower than for ICEVs 
in the high fuel price scenario. More importantly, imposing smart 
charging strategies rather than an unmanaged charging strategy de
creases the LCOD of per EV by 1.4–4.3%. From a practical perspective, it 
may be difficult to reach a level of participation in which a power system 
operator has full control of the charging of EVs, representing a 100% 
smart charging participation rate. Under a 50% smart charging partic
ipation rate, EV owners are guaranteed a contracted time to charge EVs. 
Thus, utilizing a smart charging with a 50% participation rate would 
probably be more convenient and cost effective to implement in reality. 

3.2. Hourly grid impacts 

Fig. 8 and Fig. 9 illustrate hourly dispatch in 2050 across the “C70- 
AEV-UC” and “C70-AEV–SC–100” scenarios. The results are similar to 
other scenarios: generally, the generation capacity expansion can meet 

Table 9 
Annual total costs of the power sector by 2050.  

EV 
adoption 
levels 

Charging 
strategies 

Participation 
rates/% 

Power 
sector 
costs/ 
Billion 
USD 

Additional 
costs 
caused by 
EVs 
charging 

Difference 
of the 
additional 
costs 

BAU BAU BAU 800.0 – Reference 
C70-No 

EV 
– – 1194.1 Reference +49.3% 

Moderate No 
control 

– 1253.0 +4.9% Reference 

Smart 
charging 

50 1240.3 +3.9% − 1.0% 
100 1230.7 +3.1% − 1.7% 

Aggressive No 
control 

– 1308.5 +9.6% Reference 

Smart 
charging 

50 1282.3 +7.4% − 2.0% 
100 1264.9 +5.9% − 3.3%  

Table 10 
Average energy costs of the power system across the scenarios in 2050.  

EV 
adoption 
levels 

Charging 
strategies 

Participation 
rates/% 

Power 
sector 
costs/ 
$2016/ 
MWh 

Additional 
costs 
caused by 
EVs 
charging 

Difference 
of the 
additional 
costs 

BAU BAU BAU 66.07 – Reference 
C70-No 

EV 
– – 98.63 Reference +49.3% 

Moderate No 
control 

– 103.50 +4.9% Reference 

Smart 
charging 

50 102.45 +3.9% − 1.0% 
100 101.66 +3.1% − 1.8% 

Aggressive No 
control 

– 108.08 +9.6% Reference 

Smart 
charging 

50 105.92 +7.4% − 2.0% 
100 104.48 +5.9% − 3.3%  
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electricity demand growth and peak demand. On the one hand, 
renewable energy generation profiles vary throughout the year due to 
seasonal patterns. Wind generation tends to be higher during the winter 
and the spring and lower during the mid-to-late summer. Monthly solar 

outputs are highest in the summer months because of maximized 
daylight. Hydropower has more production during the summer and the 
fall due to China’s precipitation patterns. With a restrictive carbon cap, 
renewable energy resources dominate generation mixes and generation 

Fig. 7. Total Annualized Costs in 2050. The total annualized cost is the discounted sum of the investment costs for new generators and transmission lines, the O&M 
costs, the fixed O&M costs for transmission lines and distribution systems, the variable costs, the start-up costs and the fuel costs. 

Table 11 
Annualized Integration Costs of the Power System Per EV in 2050 ($/EV-year)a.  

Charging 
strategy 

Participation rate/ 
% 

C70- 
MEV 

Additional costs caused by smart 
charging/% 

C70- 
AEV 

Additional costs caused by smart 
charging/% 

Implementation 
costb 

No control 0 352 reference 338 reference 0 
Imposing 

control 
50 300 − 12.2 258 − 21.0 9 
100 211 − 34.9 220 − 29.6 18  

a The integration costs are come from additional generation capacity, generation, transmission lines and fuel consumption. 
b Costs for smart charging US$ 150 from Göransson et al., 2010). Ten-years lifetime of EVs assumed. Discount rate of 4% assumed. 

Table 12 
Levelized Cost of Driving for one EV and one ICE Vehicle in 2050 ($/km)c.  

Charging strategy Participation rate/% C70-MEV LCOD difference relative to ICEVa/% C70-AEV LCOD difference relative to ICEVa/% ICEVa ICEVb 

No control 0 0.2089 2.25 0.2085 2.05 0.2043 0.2185 
Imposing control 50 0.2055 0.62 0.2033 − 0.48 – – 

100 0.1999 − 2.13 0.2008 − 1.71 – –  

a By 2050, most electricity vehicle costs are approximately equal to ICE drivetrains, at $14200. It is assumed that the lifetime of gasoline-driven vehicles is 12 years, 
that the VKT is 13,600 km, and fuel consumption of EVs and ICEVs are 12 kWh/100 km and 6 L/100 km, respectively, that the gasoline price is $1/L, as a base fuel 
scenario. The O&M costs of EVs and ICEVs are account for 8% of the purchase costs (Gambhir et al., 2015). 

b Fuel price forecasting ranges from $0.65/L to $1.4/L by 2050 (U.S. EIA, 2019). Here, we use the fuel price of $1.4/L as a high fuel price scenario. 
c The LCOD of per vehicle calculates how much it costs to drive a vehicle per kilometer over the vehicle’s life. The LCOD of per vehicle includes purchase costs, fuel/ 

electricity costs, O&M costs, integration costs of power system and supporting infrastructure costs from transportation sector. 
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capacity mixes. This dramatically changes electricity power system 
operating characteristics, such as load balancing and ramping flexibility. 
In the “C70” scenario, large-scale storage systems (8.8% of total gen
eration capacity) are deployed to improve nighttime flexibility and to 
smooth the output timing of renewables. Gas-fired plants are attractive 
for providing flexibility in the absence of solar because of their relatively 
low capital cost, a high degree of efficiency, operational flexibility, and 
lower CO2 emissions factors (kg CO2/kWh), despite having a higher fuel 
price than coal. 

Though the charging demand of EVs accounts for less than 6% of 
electricity demand in 2050, charging behaviors of EVs have notable 
impacts on grid operation in terms of the peak load demand and load 
rate. Most of unmanaged charging power occurs during 17:30–24:00, 

when private EVs plug in at home, which significantly increases national 
peak demand. As shown in Table 13, under the moderate EV adoption 
level, peak load increase by 5.2%. In contrast, with a 100% participation 
rate of smart charging, peak load only increases by 1.3%. This pattern is 
even more pronounced at the aggressive EV adoption levels, where 
additional peak demand would be only 3% of national peak demand, 
compared with 12.5% given an unmanaged charging scenario, resulting 
in a more stable baseload and a reduction in the need for additional 
generation capacity and local T&D capacity. It is worth pointing out that 
a higher participation rate in smart charging would result in a larger 
reduction in peak load and a higher increase in the system load rate. 

These results suggest that the EV charging power, as a flexible load, 
has a significant technical potential for optimizing hourly grid 

Fig. 8. Hourly Dispatch Schedule in “C70-AEV-UC” Scenario in 2050. The figure depicts 6 h per day, two days per month, and twelve months. Each vertical line 
separates the months, each of which contains one days. Total generation exceeds load because of local distribution transmission, transmission line losses, storage 
charge and discharge losses. 

Fig. 9. Hourly dispatch schedule in “C70-AEV–SC–100” scenario in 2050.  

Table 13 
Peak and valley demand, and load factor of the power system in 2050.  

Scenario Peak load/GW Difference/% Valley load/GW Difference/% Load rate/% Difference/% 

BAU 1817.7 Reference 1122.8 Reference 80.3 Reference 
C70 1817.7 0 1122.8 0 80.3 0 
C70-MEV-UC 1911.9 5.2 1143.6 1.9 78.5 − 2.2 
C70-MEV–SC–50 1863.6 2.5 1131.9 0.8 80.5 0.2 
C70-MEV–SC–100 1842.1 1.3 1131.1 0.7 81.5 1.5 
C70-AEV-UC 2044.3 12.5 1151.6 2.6 75.2 − 6.4 
C70-AEV–SC–50 1918.5 5.5 1135.2 1.1 80.1 − 0.2 
C70-AEV–SC–100 1873 3 1143.6 1.9 82.1 2.2  
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operation. If smart charging is successfully applied, EV charging can 
increases the power system load rate and reduce the peak demand. 
Developing generation plants with the high performance of flexibility, 
efficiency and low CO2 emissions factors are crucial to providing backup 
or generation in the absence of renewable energy. 

4. Conclusions and policy implications 

Previous literature, including (Gambhir et al., 2015; Hao et al., 2015; 
Hartmann and Özdemir, 2011; Li et al., 2016), describes the economic 
and environmental benefits of smart charging. However, most prior 
works either do not fully consider or over-simplify the additional power 
system costs to support a large-scale EV integration, as well the changes 
required in grid operation to sustain a low-carbon energy mix. The effect 
of this omission is that limiting factors stemming from the simultaneous 
implementation of both strategies may restrict the reported benefits of 
each. This paper has investigated the impacts on China’s power system 
of deploying EVs at large scale, in terms of power generation and hourly 
grid operation, generation capacity mix, environmental impacts, and 
economic impacts. We have also explored how to better improve both 
the value of and synergies of the electricity sector and the transportation 
system. Using the SWITCH-China model, we quantify the least-cost 
pathway towards both meeting future CO2 emissions constraints and 
also meeting additional demand set by the deployment of EVs by opti
mizing capacity expansion, hourly generation dispatch and instanta
neous EV charging. 

We find that, in order to achieve a 70% carbon emissions reduction 
from the emissions level in 2014 by 2050, the following measures are 
needed: (1) A rapid deployment in solar and wind capacity. An average 
annual growth rate of 86 GW of solar and 54 GW of wind from 2020 to 
2050 will meet emission targets by 2050. (2) A coal capacity phase-out. 
With the forecasted decrease in coal capacity factor observed in high 
carbon cap scenarios, phasing out around 43% of coal capacity over the 
next three decades may be necessary. (3) Additional grid flexibility. As 
the proportion of solar and wind capacity rises, more flexible generation 
resources, such as gas-fired plants and storage systems, or more flexible 
loads that can quickly ramp up or down will be needed to ensure system 
electricity load balance. 

The Chinese government is working on a timeline for the develop
ment of EVs through 2030. Given the large-scale EV deployment 
pathway we consider – around 340 million EVs in 2050 in the aggressive 
EV adoption scenario, such large-scale deployment of EVs would pro
vide solid environment benefits. Moreover, by 2050, EVs outperform 
gasoline-driven vehicles in terms of average CO2 emissions per kilo
meter at national level, almost a tenth of the emissions coming from 
gasoline-driven vehicles. As a consequence, although we see that in 
aggressive EV adoption scenario, the power system’s CO2 emissions are 
at around 61.06–62.87 Mt per year by 2050, we note that this offsets 
CO2 emissions by about 725.3 Mt from transportation sector. Thus, it 
can be concluded that an aggressive EVs deployment scenario would 
significantly decrease overall CO2 emissions in the future. 

If this development of EVs is coupled with existing decarbonization 
efforts within the power system, China can pave the way now to succeed 
in meeting its ambitious targets within the next decades. To initiate this 
transition, we find that by 2050 China’s power system costs will be at 
98.6 $/MWh, 49.3% higher than in the “BAU” scenario, in order to 
satisfy carbon cap constraint. Moreover, system costs will be at 108.1 
$/MWh as a result of infrastructure needs to match a large-scale 
deployment of EVs. In fact, a large development of EVs to alternate 
gasoline-driven vehicles will require considerable additional investment 
in the short-term for both the transportation sector and the power sector, 
as levelized costs of driving (LCOD) of gasoline-driven vehicles are ex
pected to be lower than EV in the short-term. However, over the 2050 
horizon, EVs will become cost-competitive to gasoline-driven vehicles, 
the LCOD of EVs reaching even lower levels than gasoline-driven vehi
cles. Therefore, a large-scale deployment of EVs, coupled with more 

aggressive carbon cap transition of power sector, is a most likely cost- 
effective option to meet China’s ambitious carbon cap target for both 
power sector and transportation sector in the future. 

In terms of generation capacity mix, power generation, and hourly 
grid impacts, the decarbonization process of China’s power system 
needs more flexible generation to incorporate renewables on a large 
scale. When coupled with EV charging demand, unmanaged charging 
results show that times of charging demand from EVs correlate with 
times of evening peak demand on the national level. The peak load 
would increase substantially, which has a significant impact on the 
synergistic operation between gas-fired plants, storage systems and solar 
PV, as described in Section 3.2. This increase in peak load cannot be 
satisfied without additional investments in generation capacity, espe
cially gas-fired power plants and storage with high flexibility. Yet, with 
the increasing amount of EVs, fluctuations in power system operation 
increase, so it is imperative to investigate how to shift EV charging de
mand to times of low national demand. In contrast, optimizing EV 
charging to serve the grid in a way that would defer the construction of 
new generation capacity and diminish the growth in electricity demand 
is already possible. If smart charging is done, charging demand rises in 
the off-peak time to avoid additional peak demand and to reduce the 
need for power generation from gas-fired power plants and storage in 
the times of evening peak demand during the absence of solar genera
tion. The electricity demand in moderate EV adoption scenarios can be 
met without additional generation capacity at 100% participation in 
smart charging. Therefore, even with a low participation rate in smart 
charging, using EVs as grid support can have favorable effects on the 
load rate. 

The difference in system total cost savings between smart charging 
and unmanaged charging suggests that smart charging provides total 
cost reductions in all the scenarios that we explored. Annually, China’s 
power system can save total costs between $9 to $75 billion by man
aging EVs with smart charging by 2050. The introduction of managed 
charging reduces the average costs per EV between $43 to $123 annu
ally. Therefore, between 3% and 9.6% of total costs are avoided annu
ally by managing EV charging behavior, compared with an unmanaged 
charging strategy. Strategies that prioritize saving system costs should 
deliver subsidies to drivers who participate in smart charging programs, 
should build more charging infrastructure, and should upgrade local 
transmission systems to improve the ability for EVs to respond to de
mand, ultimately increasing their market share. 

Our method has several limitations. Although it accounts for how 
smart charging, market share of EVs and decarbonization policies of the 
power system affect the Chinese power sector’s long-term generation 
capacity and transmission line expansion, system costs, this method does 
not predict the stock of EVs, which is an exogenous input, and it ignores 
the difference in driving behaviors between different provinces. Simi
larly, it does not account for how the time-of-use electricity prices affect 
the EVs users’ response to participate in the smart charging program. 
Other generation technologies, like nuclear, hydro power, geothermal, 
and biomass, may need more uncertainty to the application of available 
technologies. Forecasting fuel price and capital costs of generation 
technologies may change decisions to install new technologies over 
time. Electricity demand forecasts and capital cost assumptions are 
embedded with uncertainties. Other growing policy methods, such as a 
carbon tax which has already been launched in some pilot cities, as well 
as a national renewable portfolio standard (RPS) target set for 2020 and 
2030, may add more complex power sector interactions. In the future, 
we plan to include more uncertainty analyses. Future works of the 
SWITCH-China will also consider the synergies of a carbon tax, RPS 
targets, and demand response. Other reason for this paper is to make all 
of the tools needed for other researchers, policy makers, and industrial 
companies to interrogate additional scenarios. We are examining a 
range of policy and market cases that focus on an expansion of the RPS 
scenario, and will release a set of papers focused on the emerging carbon 
market, job creation scenarios in the evolving energy sector, and on 
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models that are stochastic and based on uncertainties in future energy 
demand, technology costs, and regional power pool connections. 
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Appendix. A. The SWITCH-China Model 

The SWITCH model is a capacity expansion and dispatch model of the power system. Using the SWITCH-China model, we model the entire Chinese 
power system. The model is a linear program to minimize the sum of all investment and operation costs, including (1) capital costs of new and existing 
generators; (2) fixed O&M costs of all generators; (3) variable costs of all generators; (4) fuel costs; (5) transmission lines costs, and local transmission 
and distribution (T&D) costs; (6) fixed O&M costs of new and existing transmission lines, and local T&D. 

The model has five basic constraints: power balance constraints, conventional unit commitment constraints, generation technologies resources 
constraints, planning and operation marginal reserves constraints, and policy constraints. Extending the conventional unit commitment model, the 
SWTICH-China model considers the optimization dispatch for EV charging, as well as carbon emission constraints, natural resource limits of re
newables. Reserve margin targets are provided by thermal plants, big hydro power plant and storage units. The planning reserve requires that enough 
power plant and transmission capacity are built to provide a capacity reserve margin. Additionally, the spinning reserve requirement is calculated as a 
percentage of load plus a percentage of intermittent generation in each balancing area in each hour. We use a simple and flexible model of spinning 
reserves that tracks the state of unit commitment and dispatched capacity to ensures that the generation fleet has enough up- and down-ramping 
capacity to satisfy reserve requirements. The unit commitment module is a prerequisite for spinning reserves. The detailed formulation of the 
SWITCH-China model is shown in supplementary. 

The model data inputs, including power plants information, transmissions, capital costs of generation technologies assumptions, O&M costs of 
generation technologies assumption, capital costs of transmissions and local T&D assumptions, O&M costs of transmissions and local T&D as
sumptions, fuel costs, demand projection assumptions, renewables electricity generation profiles are based on (He et al, 2016, 2020). Besides, the 
update to the SWITCH-China model is shown in supplementary. 

Appendix. B. The calculation of emissions and costs for both transportation sector and power sector 

The charging demand of EVs is calculated by aggregating different vehicle types in each year: 

EDy,m =
∑

model

Stocky,m × VKTy,m × FEy,m

Chargey,m  

where, EDy,m (kWh) represents energy demand of EVs of type m in year y; Stocky,m represents vehicles stock of EVs of type m in year y; VKTy,m (units)
represents annual vehicle travel distance stock of EVs of type m in year y; FEy,m (km /kWh) represents fuel economy of EVs of type m in year y; 
Chargey,m(%) is charging efficiency of EVs of type m in year y, assuming to be 95% in all periods. 

In order to compare the costs savings and emissions differences in both the power sector and transportation sector. We created two EVs deployment 
scenarios that are based on the same vehicles stock projections but differ in the share of EVs versus ICEVs. 

The emissions TE in period y from each vehicle type i and each drive-train type j are calculated as follows: 

TEy =
∑

i

∑

j
pidisi,jei,jfj  

where, pi is the stock of vehicle type i, di is the vehicle kilometers travel of vehicle type i, si,j is the share of drive-train type j for vehicle type i, ei,j is the 
energy consumption per unit travel distance of drive-train type j for vehicle type i, fj is the co2 emission per unit energy consumption of drive-train 
type j. 

The levelized cost of driving of conventional vehicles and EVs are shown as follow (Hao et al., 2015): 

LCOD=
PC + AC +

∑n
i=1

(FCi+OMi+ICi)

(1+dr)i− 1
∑n

i=1VKTi 

B. Li et al.                                                                                                                                                                                                                                        

https://doi.org/10.1016/j.enpol.2020.111962
https://1drv.ms/w/s!AnfdntpX-yxegYEYSnMWQtnG0svRRg


Energy Policy 149 (2021) 111962

14

where, LCOD is the levelized cost of driving of vehicles ($/km); PC is the vehicle purchase cost; FCi is the fuel cost at vehicle age i; OMi is the O&M cost 
at vehicle age i; ICi is power system integration costs at vehicle age i. AC is the charging infrastructure cost (only for EVs); dr is the discount rate; VKTi 

is annual vehicle travel distance at vehicle age i. 
The detailed calculations of LCOD are formulated as follows: 

FC=FE⋅FP⋅VKT  

IC =PIC + SCC  

where, FE is fuel efficiency of vehicle (L/100 km for ICEV or kWh/100 km for EV); FP is fuel price ($/L for ICEVs or $/kWh for EVs), and electricity 
price is used by average energy costs from the SWITCH-China model; PIC is the additional power system costs per EV as the cost of integrating a 
particular amount of EVs; SCC is the implementation costs of smart charging.   

Data input Major assumption Notes 

Vehicle cost estimate By 2050 most electric vehicle costs are approximately equal to the ICE vehicle, at $14200. Gambhir et al. (2015) 
O&M costs 8% of the purchase costs for EVs and ICEVs. Gambhir et al. (2015) 
Fuel efficiency EVs 12 kWh/100 km. Gasoline-driven vehicles 6 L/100 km Gambhir et al. (2015) 
Vehicle kilometer travel distance ICEVs and EVs13600 km per year Huo et al. (2012) 
Vehicle median lifetime 12 years (ICEVs), 10 years (EVs). Gambhir et al. (2015) 
Fuel CO2 emissions factor Gasoline 2.2 kgCO2/L Gambhir et al. (2015) 
Fuel price Gasoline 1$/L. High fuel price of gasoline scenario 1.4 $/L. 

Electricity price is average energy costs, as shown in Table 10. 
U.S. EIA (2019) 

EVs charging infrastructure costs Charging infrastructure $150 per EV. 
Additional power system costs per EV is shown in Table 11. 
Implementation costs of smart charging $150 per EV. 

(Göransson et al., 2010; Jian et al., 2018) 

Discount rate 4%   

Appendix. C. The formulation of smart charging of EVs 

The mathematical formulation of EV’s flexibility is shown below: 

0≤Pe
t ≤ Pmax

t , ∀t ∈ T  

Elower
t ≤

∑t

τ=1
Δτ × Pe

τ ≤ Eupper
t  

where, T is the number of time interval; t is the duration in hours; Pmax
t is the maximum aggregated charging power of the entire fleet at time t; Elower

t 
and Eupper

t represents respectively the lower and upper boundaries for the aggregated energy demand of the entire fleet by time t, respectively; The first 
Equation only allows charging within the maximum aggregated charging power constraints, and does not allow the of energy back to the grid. The 
second Equation asserts that the cumulative charging energy must be between the upper and lower energy boundaries. 
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