
The Electricity Journal 34 (2021) 106925

Available online 6 March 2021
1040-6190/© 2021 Elsevier Inc. All rights reserved.

Cost and impact of weak medium term policies in the electricity system in 
Western North America 

Patricia L. Hidalgo-Gonzalez a,b,c,*, Josiah Johnston a, Daniel M. Kammen a,d 

a Energy and Resources Group, University of California, Berkeley, CA, USA 
b Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA 
c Mechanical and Aerospace Engineering, University of California, San Diego, CA, USA 
d The Goldman School of Public Policy, University of California, Berkeley, CA, USA   

A R T I C L E  I N F O   

Keywords: 
Renewable energy 
Carbon lock-in 
Energy policy 
Cost of delayed action 

A B S T R A C T   

We study the cost and lock in of carbon intensive technologies due to weak medium-term policies. We use 
SWITCH WECC—a power system capacity expansion optimization model with high temporal and geographical 
resolution. We test three carbon cap scenarios. For each scenario, we optimize the power system for a medium 
timeframe (2030) and a long timeframe (2050). In the medium timeframe optimizations, by 2030 coal replaces 
gas power. This occurs because the long optimization foresees the stronger carbon cap in 2050. Therefore, it is 
optimal to transition towards cleaner technologies as early as 2030. The medium-term optimization has higher 
costs in 2040 and 2050 compared to the long optimization. Therefore, to minimize total costs to reduce emissions 
by 80 % in 2050, we should optimize until 2050 or have stronger carbon cap policies by 2030 (such as 26 % 
carbon emissions reductions from 1990 levels by 2030 across the WECC).   

1. Introduction 

For over 20 years we have been negotiating agreements that try to 
reduce greenhouse gas emissions to stabilize their concentration (Center 
for Climate and Energy Solutions, 2018). A recent iconic international 
meeting was the 21st Session of the Conference of the Parties to the 
United Nations Framework Convention on Climate Change in 2015. Its 
main outcome was the reaffirmation of the goal of limiting global 
temperature increase below 2 ◦C, while urging efforts to limit the in
crease to 1.5 ◦C (United Nations, 2015). In 2007, the Intergovernmental 
Panel on Climate Change (IPCC) had stated that the 2 ◦C goal could be 
achieved if different sectors of the economy in industrialized countries 
would reduce their emissions to specific targets. The electricity sector 
would have to reduce its emissions to 80 % below 1990 levels by 2050 
(Intergovernmental Panel on Climate Change et al., 2007). In an attempt 
to achieve this long-term goal, the U.S. proposed the Clean Power Plan 
(CPP)—which was repealed by the U.S. Environmental Protection 
Agency in 2019 (Federal Register, 2019). The target stated that the 
power system would need to reduce its emissions to 32 % below 2005 
levels by 2030 (Environmental Protection Agency, 2015). Additionally, 
California set its state-wide carbon cap target to reduce emissions 40 % 
below 1990 levels by 2030 (Office of the Governor and Brown, 2021). 

More recently, the IPCC stated that if global warming would be limited 
to 1.5 ◦C, the avoided climate change impacts on sustainable develop
ment, eradication of poverty and reducing inequality would be greater 
compared to the impacts from 2 ◦C (IPCC, 2018). 

These different emissions reductions goals with different timeframes 
present a challenge for power system regulators. What is the most 
economically efficient way to plan and operate the power system? 
Should we optimize investments on new power plants to reach 2030 
emissions targets (e.g. CPP’s intent) and from there optimize until 2050 
to achieve the long-term emission targets (e.g. IPCC)? Or should we plan 
and optimize the power system capacity expansion from today until 
2050? 

This question has been studied for the entire economic sector using 
different global integrated assessment models. It has been shown 
(Luderer et al., 2013; Riahi et al., 2013; Kriegler et al., 2014; Bertram 
et al., 2013; Schaeffer et al., 2015; Riahi et al., 2015; Weyant, 2017; 
Bertram et al., 2015) that weak climate near-term targets delay the 
transition towards a cleaner economy, which will require aggressive 
subsequent action to achieve climate stabilization goals. These studies 
also show that, due to the lack of foresight, unproductive near-term 
investments take place, which results in fossil fuels lock-ins and higher 
long-term mitigation costs. Therefore, it is relevant to study the impacts 
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of short or medium-term policy for the electric power system. Addi
tionally, the electricity and heat sector is particularly important because 
it is the greatest emitter in the world, accounting for 30.4 % of total 
greenhouse gas emissions as of 2016 (World Resources Institute, 2020). 
To the best of our knowledge, this type of analysis has not been applied 
to the electric power sector, and this study fills that gap. This publication 
expands the work done by the authors for the California Energy Com
mission (Wei et al., 2019). 

The main contribution of this work is to show the cost effectiveness 
of having stronger medium term (2030) policies that would promote an 
earlier transition towards lower carbon intensive technologies in the 
power system. 

2. Problem formulation 

To study the consequences of weak short-sighted electricity policy 
we use the SWITCH model (AMPL version). SWITCH is a long-term 
power system capacity expansion model with high temporal and 
geographical resolution. The objective function minimizes the total 
power system cost: investment and operation costs of electricity gener
ation and transmission. In addition to operational (reserves, ramping, 
etc.), technological and resource potential constraints, different policy 
constraints can be modeled (e.g. carbon cap, carbon tax, Renewable 
Portfolio Standard (RPS), etc.). To the best of our knowledge, SWITCH’s 
high time and geographical resolution makes it a power system capacity 
expansion model without precedent. For example, Western North 
America is divided in 50 geographical zones (refer to Fig. 6), and the 
time resolution can vary from hourly to sampled hours that represent 
typical days during the years being optimized. This allows a more 
realistic study of the expansion and operation of the electrical grid with 
presence of renewable intermittent resources such as wind and solar 
power. For a detailed description of the model refer to the Supplemen
tary Information. 

So far, the SWITCH model has been developed for different regions 
and used for several studies (Fripp, 2012; Wei et al., 2013; Mileva et al., 
2013; Nelson et al., 2012; Wei et al., 2019; He et al., 2016; Carvallo 
et al., 2014; Ponce de Leon Barido et al., 2015). This study uses SWITCH 
WECC (Western Electricity Coordinating Council) because the electricity 
system is the second highest-emitting economic sector in the U.S. with a 
32 % share as of 2018 (Environmental Protection Agency, 2020). 

We use two optimization methods: “long optimization” and “medium 
optimization”. In the long optimization, the timeframe optimized is from 
2016 until 2055, taking into account carbon cap constraints for all the 
years. The medium optimization optimizes in a shortsighted manner by 
solving the problem in two consecutive stages: 1) optimizing the grid in 
2016–2030 (without any information after 2030), 2) using the optimal 
buildout in 2030 from stage 1 optimizes from 2031 until 2055. For more 
details on the problem formulation refer to the Methodology section. 
The medium and long optimization are run for each of the three sce
narios modeled (i.e. solutions from six optimization problems are 
studied in this work). 

3. Methodology 

SWITCH is a long-term power system capacity expansion model with 
high temporal and geographical resolution. As an optimization problem, 
it is classified as a deterministic linear or mixed integer program. The 
objective function minimizes the total power system cost: investment 
and operation costs of generation and transmission. The decision vari
ables of the optimization problem can be summarized in the following 
sets: capacity investment decisions for each potential new project in 
each period, capacity investment decisions for each potential new 
transmission line between any load areas in each period, hourly dispatch 
decisions for each existing and new generator installed in each period, 
decisions on hourly transmitted energy through the existing and new 
transmission lines. The main constraints in the optimization problem 

are: hourly demand in each load area has to be met by the generation 
and transmitted energy, capacity limits must be respected for generators 
and transmission lines, wind and solar generators are limited by their 
hourly geolocated capacity factors, generation from each hydropower 
plant is limited by historical monthly availability (minimum, average 
and maximum generation), biomass and geothermal deployment is 
limited by the resource availability in the WECC, hourly ramping re
strictions for generators depending on their technology, respect yearly 
maintenance time for each generation technology, lifetime of different 
technologies must be respected, policy constraints as carbon cap, carbon 
tax, RPS, among others. For a complete list and description refer to the 
Supplementary Information. 

Geographically, the SWITCH WECC model divides the WECC in 50 
zones or load areas. The transmission system was obtained from Ventyx 
geolocated transmission line data (Ventyx Corporation, 2009) also using 
data on the thermal limits from the Federal Energy Regulatory Com
mission (FERC) (Federal Energy Regulatory Commission, 2009). In total, 
there are 105 existing transmission lines connecting load zones in 
SWITCH. SWITCH can decide to build more transmission lines if it is 
optimal. De-rating of lines and transmission losses are taken into 
account. 

Electricity demand profiles come from historical hourly loads from 
2006 (Federal Energy Regulatory Commission, 2006; Platts Corporation, 
2009). These profiles are projected for future years. Hourly existing and 
potential new wind farm power output is derived from the 3TIER 
Western Wind and Solar Integration Study wind speed dataset (National 
Renewable Energy Laboratory, 2010a,b) using idealized turbine power 
output curves on interpolated wind speed values. For existing and po
tential new solar power plants, hourly capacity factors of each project 
over the course of the year 2006 are simulated using the System Advisor 
Model from the National Renewable Energy Laboratory (National 
Renewable Energy Laboratory 2013a). The optimization can choose 
from over 7,000 potential new geolocated generators in the WECC. 

Fuel prices projections for each load area were obtained from the U. 
S. Energy Information Administration (U.S. Energy Information 
Administration, 2017). Capital costs and operation and maintenance 
costs were obtained from Black and Veatch (Black & Veatch, 2012). The 
historical pool of exiting power plants in the WECC was obtained from 
the US Energy Information Administration (EIA-860, EIA-923, 2007 
data). 

In order to study the impact of insufficient planning horizons with 
weak near-term policies we use two optimization methods: “long opti
mization” and “medium optimization”. The control case or long opti
mization is the traditional deterministic optimization from 2016 to 
2055. The optimization horizon is divided in four investment periods of 
ten years each: 2016–2025 (which we call “2020”), 2026–2035 
(“2030”), 2036–2045 (“2040”), and 2046–2055 (“2050”). Each period 
simulates 72 h of dispatch. For one year per period we sample every two 
months, two days per month (median and peak load days) and every 
four hours per day (6 months x 2 days/month x 6 hour/day = 72 h). The 
peak days have the weight of 1 and the median days of n – 1 where n is 
the number of days of that month, and this represents a full month. 

The medium optimization was developed for this study to analyze 
the impacts of short term policy goals on the power system operations 
and capacity expansion. The basic idea behind the medium optimization 
is to break investment planning into two stages: present day until 2030, 
and 2030–2050. The first step minimizes the cost of the operation and 
investment of the power system from 2016 to 2030 taking into account 
all policy constraints (e.g. yearly carbon cap). The second step consists 
of optimizing investments and operations from 2031 to 2055 with 
stronger emission policies for 2050 (i.e. 80 % reductions). This medium 
optimization recreates the challenge of optimizing the expansion and 
operation of the power system in phases. First, only taking into account 
policies until 2030. Investment decisions made until 2030 become the 
initial state for the second step of the optimization. The second step 
optimizes decisions from 2031 to 2055 to comply with more stringent 
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policies, specially by 2050. Therefore, the hypothesis is that the first step 
will expand and operate the system in a shortsighted way; having as a 
consequence carbon locks-in or a delayed transition towards technolo
gies with lower CO2 emissions. Thus, the second step will have to change 
the energy mix more aggressively to transition towards a cleaner electric 
grid by 2050 compared to the long optimization (which optimizes in 
only one step: 2016–2055, taking into account the more stringent 2050 
carbon cap constraints). 

The long and medium optimization use the same periods and hours 
sampled for consistency reasons and in order to isolate the impact and 
carbon locks-in produced by weak medium-term electricity policies. The 
medium and long optimization are run for each of the three carbon cap 
scenarios modeled (i.e. solutions from six optimization problems are 
studied in this work). 

4. Scenarios 

The scenarios that are used in this study are three different carbon 
cap scenarios shown in Fig. 1. 

In Fig. 1, the scenario with the green line (“80 % by 2050”) corre
sponds to a linear decrease in emissions from 2016 until 2020 where 
emissions are restricted to 1990 levels (Office of the Governor Arnold 
Schwarzenegger, 2006). Then a linear decrease from 2021 until 2050 
where 80 % reductions from 1990 levels are enforced (Intergovern
mental Panel on Climate Change et al., 2007). The blue line (“CPP”) 
corresponds to a linear decrease in emissions from 2016 until 2020 
where emissions are restricted to 1990 levels and then a linear decrease 
in emissions until 2030 where the CPP target is enforced (32 % re
ductions from 2005 levels, or analogously, 11 % reductions from 1990 
levels). From 2031 until 2050 the cap has a linear decrease until 80 % 
reductions from 1990 levels are achieved by 2050. Finally, the red line 
(“40 % by 2030”) corresponds to the same linear decrease in emissions 
from 2016 until 2020 where emissions are restricted to 1990 levels. 
Then a linear decrease until 2030 where 40 % of reductions are enforced 
according to a Californian executive order (Office of the Governor and 
Brown, 2021), simulating the case if this policy were to be expanded to 
the WECC. And from 2030 until 2050 a linear decrease until 2050 when 

80 % reductions are mandated. Throughout this manuscript the three 
scenarios will be addressed as “80 % by 2050”, “CPP”, and “40 % by 
2030” respectively. 

The intuition behind the first step of the medium optimization is that 
it provides decisions that would be made until 2030 without considering 
the more stringent policy that will be enforced in 2050. Therefore, they 
reflect the signals that are currently given to the investors of the power 
system and to the grid’s operators. On the other hand, the second step of 
the medium optimization faces the challenge of achieving the more 
stringent carbon caps from 2031 until 2050 having a grid already built 
by 2030 (from the first step) that did not take into account in its 
expansion carbon caps beyond 2030. Therefore, the medium optimiza
tion seeks to mimic the way we would expand the power system in the 
WECC if we keep imposing only near-term policies as we have done so 
far. The caveat of this study is that we assume we will have stringent 
carbon cap policies by 2050, whether they affect our 2030 decisions 
(long optimization) or not (medium optimization). 

Consequently, the research question we study is: How to plan and 
implement policy in the power system efficiently? From today until 
2030 and then until 2050? Or plan from today until 2050? 

5. Results and analysis 

5.1. Optimal energy mix for the three scenarios in the long optimization 
case 

To understand the impacts of medium term planning, we must first 
examine results from the long-run optimizations (Fig. 2). We can 
observe how in all the scenarios coal power plants are decommissioned 
progressively over the four periods. Each scenario presents a different 
transition rate for decommissioning and electricity generation reduction 
from coal power plants. By period 2030, the scenario that reduces coal 
power generation the most is “40 % by 2030” with a 1.6 % of partici
pation of coal. The scenario “80 % by 2050” follows it with a 4.0 % and 
finally the “CPP” scenario with 4.4 % of energy generated by coal. 

From the 2020 period to the 2030 period all scenarios present an 
increase in energy generated by gas power plants. This gas generation 
increase ranges from 45 % by 2030 (“40 % by 2030”) to 48 % (“CPP”). 
Another trend of interest is the consistent increase in wind and solar 
power generation from period 2020 until period 2050. Nonetheless, 
solar and wind generation reach a more significant share only by 2050. 
By 2050, solar power generates roughly 20 % of the electricity, and wind 
power around 53 %. 

5.2. Comparison of optimal capacity installed in 2030 between the 
medium and long optimization 

Table 1 shows total capacity installed per fuel by 2030 for each of the 
scenarios under the medium and long optimizations. Fig. 3 aids to 
identify key differences among the medium and long optimization by 
showing the difference in installed capacity per fuel in 2030. By 2030, 
all scenarios in the medium optimization deploy coal, a technology more 
carbon emissions intensive (i.e. ton CO2/MWh), at the expense of less 
deployment of a cleaner one, gas, compared to the long optimization. 

In the medium optimization cases, due to their lack of foresight of the 
stringent carbon cap by 2050, coal power plants are decommissioned at 
a slower rate than in the long optimization. This results in more installed 
capacity of coal power plants in the medium optimization—a carbon 
lock-in. On the other hand, the medium optimization invests less in gas 
power plants compared to the long optimization. The more carbon 
intensive mix in 2030 in the medium optimization requires an abrupt 
technological change (2030–2050, i.e. 20 years instead of 40) to comply 
with 2050 stringent carbon caps. The scenario that shows the greatest 
difference in installed coal and gas power plants between the medium 
and long optimization in 2030 is “CPP”. There is an excess of 9.3 GW of 
coal power plants and a lack of 11 GW of gas. 

Fig. 1. WECC carbon cap scenarios. In green is the 80 % emissions reductions 
from 1990 levels by 2050 scenario (labeled as “80 % by 2050”), in blue the 
Clean Power Plan scenario (labeled as “CPP”), and in red 40 % emissions re
ductions by 2030 (labeled as “40 % by 2030”). (For interpretation of the ref
erences to color in this figure legend, the reader is referred to the web version of 
this article). 
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5.3. Comparison of optimal energy generation by 2030 between the 
medium and long optimization 

As expected, the difference between the energy generated in the 
2030 period in the medium and long optimization follows the same 
pattern as the capacity installed. Fig. 4 shows the difference in electricity 
generation by 2030 per fuel between the medium and long optimization. 

In all scenarios in the period 2030, the medium optimization gen
erates more electricity from coal plants than in the long optimization. 
The energy produced by coal plants in the medium optimization exceeds 

the long optimization from 13 TWh (“80 % by 2050”) up to 690 TWh 
(“CPP”). In general, the excess in generation from coal power plants 
substitutes generation from gas power plants. “CPP” shows the greatest 
difference in generation across all scenarios. In the medium optimiza
tion, it produces 690 TWh more of energy from coal plants compared to 
the long optimization. To put this in perspective, 690 TWh is roughly 7.4 
% of the total load in the 2030 period. The change in energy for the rest 
of the scenarios is less than 2 % of the total load by 2030. 

This substitution of gas in favor of coal for the “CPP” scenario can be 
explained by the fact that “CPP” does not have a stringent carbon cap by 
2030. Therefore the medium optimization does not transition from more 
carbon intensive technologies to cleaner ones as early as 2030. However, 
decisions made for 2030 in the long optimization take into account the 
stringent carbon cap by 2050. This results in a considerable decom
mission of coal by 2030 to cost effectively reach the 2050 emissions 
target. 

5.4. Comparison of optimal emissions by 2030 between the medium and 
long optimization 

The explanation behind the carbon lock-in in the medium-term op
timizations for “CPP” lies in the optimal CO2 emissions by 2030. Fig. 5 
shows emissions in the year 2030 for all the scenarios for the medium (in 
yellow) and long (in blue) optimizations. The red dashed lines corre
spond to the carbon cap for each scenario in 2030. The medium opti
mization does not have an early foresight of the more stringent carbon 

Fig. 2. Energy generation share (as a fraction) per fuel per period for the long optimization for the scenarios studied. On the left side is the “80 % by 2050” scenario, 
in the middle the “CPP”, and on the right side the “40 % by 2030”. 

Table 1 
Capacity installed in gigawatts in the WECC per fuel by 2030 for the scenarios 
studied. The columns show installed capacity from the medium and long opti
mization for each scenario in 2030.   

80 % by 2050 CPP 40 % by 2030 

Fuel Medium Long Medium Long Medium Long 

Biomass 2.4 2.5 2.4 2.4 2.5 2.5 
Coal 5.7 5.5 15.1 5.8 3.8 2.4 
Gas 111.9 113.4 104.5 115.0 108.9 111.6 
Geothermal 0.5 0.8 0.5 0.6 1.1 1.1 
Solar 22.3 21.3 21.3 19.6 27.0 26.2 
Storage 0.0 0.0 0.0 0.0 0.0 0.0 
Uranium 7.7 7.7 7.7 7.7 7.7 7.7 
Water 66.7 66.7 66.7 66.7 66.7 66.7 
Wind 39.2 37.6 37.4 33.7 47.4 42.0  

Fig. 3. Change in capacity installed in gigawatts per fuel by 2030 for the scenarios studied. The difference corresponds to capacity per fuel installed by 2030 in the 
medium optimization minus the capacity installed in 2030 in the long optimization. On the left is the “80 % by 2050” scenario, in the middle the “CPP” scenario 
(where more coal and less gas are installed in the medium optimization), and on the right side the “40 % by 2030” scenario. 
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caps it will have to face after 2030 during its second optimization stage. 
Therefore, it is optimal to emit as much carbon as its 2030 cap allows. 
This can be observed where yellow bars are at the same height as the 
carbon cap. 

For the “CPP” case, the long optimization emits less carbon (blue bar) 
in 2030 than the carbon cap. This occurs because the long optimization 
has perfect foresight in 2030 of the more stringent carbon cap target in 
2050. Therefore, the long optimization realizes that it is cost effective to 
start deploying cleaner energy as early as 2030 in order to optimally 
reach the stricter emissions goal of 2050. This shows the importance of 
optimizing the power system in the long-term when medium term pol
icies are weak. 

In the case of the medium optimization for “CPP”, due to its lack of 
foresight, it emits CO2 at the maximum allowed in 2030. Therefore, the 
second step of the medium optimization has to transition more abruptly 
to cleaner technologies to achieve the 2050 target. This capacity 
expansion is suboptimal (Refer to Cost analysis section). 

On the other hand, for the scenarios “80 % by 2050” and “40 % by 
2030” optimal carbon emissions in the year 2030 in the case of the long- 
term optimizations are equal to their respective carbon caps. This sug
gests that the carbon caps in 2030 for “80 % by 2050” and “40 % by 
2030” are well aligned with the carbon cap in 2050. Therefore, through 
these two scenarios we show that stronger medium-term policies yield to 
an expansion of the power grid closer to the optimal expansion resulting 
from optimizing in the long-term. 

In practice, one way to cope with the lack of foresight of optimizing 
in the medium term would be to enforce more stringent policies for 
2030. These policies would be designed to mimic the optimal results of 
the long optimization. For example, for the “CPP” scenario, we would 
need to force a 26 % carbon emissions reductions from 1990 levels by 
2030 (which corresponds to the optimal reductions achieved in the long 
optimization by 2030). 

5.5. Clean Power Plan carbon lock-in maps in 2030 

Fig. 6 shows the difference in installed capacity by 2030 between the 
medium and long optimization for coal (bottom) and gas (top) for the 
“CPP” scenario for each zone. Darker blue represents more installed 
capacity in the medium optimization, while darker red means less. In 
general, there is a substitution between installed coal and (lack of 
installed) gas power plants in the medium optimization among the 
geographical zones. 

5.6. Cost analysis 

Fig. 7 shows the increase in cost per period from using the medium 
optimization instead of the long optimization. There are minor to no 
savings in 2020 and 2030 from using the medium optimization. Thus, 
there is no economic benefit of having weaker policies by 2030. How
ever, the expansion and operation of the power system from the medium 

Fig. 4. Change in energy generated in terawatt hour per fuel during the period 2030 for the scenarios studied. The difference corresponds to the generation per fuel 
by 2030 in the medium optimization minus the generation in 2030 in the long optimization. On the left is the “80 % by 2050” scenario, in the middle the “CPP” 
scenario (where more coal and less gas are deployed in the medium optimization), and on the right side the “40 % by 2030” scenario. 

Fig. 5. CO2 emissions in the year 2030 for the medium (yellow) and long optimization (blue). The red dashed line represents the carbon cap for the year 2030 for 
each scenario. On the left side is the “80 % by 2050” scenario, in the middle the “CPP” scenario, and on the right side the “40 % by 2030” scenario. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article). 
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Fig. 6. Change in gas (top) and coal (bottom) power plants’ capacity in gigawatts by 2030 for the “CPP” scenario. The difference corresponds to capacity installed by 
2030 in the medium optimization minus the capacity installed by 2030 in the long optimization. 
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optimization in 2040 and 2050 is more expensive than the cost incurred 
by the long optimization in those periods. The most extreme case is for 
the “CPP” scenario, where the total cost of expanding and operating the 
grid in 2050 is 11 % more expensive than for the long optimization. In 
other words, the cost of electricity in 2050 obtained from using the 
medium optimization is of $179.70/MWh, instead of $162.41/MWh 
achieved by the long optimization. Thus, we have shown the sub opti
mality of the solution provided by the medium optimization. This is due 
to the more abrupt transition to clean energy that has to take place in the 
last two decades. This contrasts the expansion and operation of the long 
optimization for “CPP” because it transitions progressively over the 
decades to meet its 2050 carbon cap cost effectively. In the other two 
scenarios, the increase in cost is small. Nonetheless, this minor increase 
in cost in 2040 and 2050 reflects the fact that more coal is deployed in 
2030 instead of gas compared to the long optimization. Therefore, these 
two scenarios also have to adjust their grid in the last two decades, but to 
a lesser extent compared to “CPP”. Thus, their medium-term carbon 
policies are strong enough to allow a closer-to-optimal transition to meet 
the strongest carbon cap policy by 2050. 

6. Conclusions and policy implications 

Throughout this work we study the question of planning the power 
system in the medium (2030) or long-term (2050). Results are conclu
sive by depicting a higher deployment of coal power instead of gas by 
2030 in the medium-term optimizations compared to results from the 
long-term optimizations for the same year. Conversely, the long-term 
optimizations show a progressive transition towards a cleaner electric 
grid from early stages (2030). 

The medium-term optimizations do not foresee the more stringent 
carbon cap by 2050. Thus, they have to transition quicker to a cleaner 
grid in the last two decades (second step of the optimization) instead of 
progressively transitioning during the four periods. This is clearly 
observed in the “CPP” case, where its carbon cap by 2030 is inactive in 
the long optimization. This means that it is optimal to emit less CO2 than 
it is required in 2030 to achieve the 2050 goals cost effectively. 

To address the impact of medium term planning, we recommend to 
either place more stringent targets in the medium term (2030) or plan 
until 2050 with its more restrictive carbon cap by the end of the simu
lation. Given that it is impractical to suggest regulators to optimize the 
grid until 2050, we recommend to design stronger near-term policies (e. 

g. 2030) that would result in mimicking decisions made by optimizing in 
the long term. For the “CPP” scenario, instead of enforcing a reduction 
on emissions to 11 % below 1990 levels by 2030, a reduction in emis
sions by 26 % in 2030 in the WECC would mimic the optimal and cost- 
effective energy transition of planning in the long-term. 
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