Search Results for 'decarbonization'

Power system balancing for deep decarbonization of the electricity sector

We explore the operations, balancing requirements, and costs of the Western Electricity Coordinating Council power system under a stringent greenhouse gas emission reduction target. We include sensitivities for technology costs and availability, fuel prices and emissions, and demand profile. Meeting an emissions target of 85% below 1990 levels is feasible across a range of assumptions, but the cost of achieving the goal and the technology mix are uncertain. Deployment of solar photovoltaics is the main driver of storage deployment: the diurnal periodicity of solar energy availability results in opportunities for daily arbitrage that storage technologies with several hours of duration are well suited to provide. Wind output exhibits seasonal variations and requires storage with a large energy subcomponent to avoid curtailment. The combination of low-cost solar technology and advanced battery technology can provide substantial savings through 2050, greatly mitigating the cost of climate change mitigation. Policy goals for storage deployment should be based on the function storage will play on the grid and therefore incorporate both the power rating and duration of the storage system. These goals should be set as part of overall portfolio development, as system flexibility needs will vary with the grid mix.

Declaration of the Health of People, Health of Planet and Our Responsibility Climate Change, Air Pollution and Health Workshop

This declaration is based on the data and concepts presented at the workshop: Health of People, Health of Planet and Our Responsibility Climate Change, Air Pollution and Health Organized by the Pontifical Academy of Sciences Casina Pio IV, Vatican City, 2-4 November 2017, Casina Pio IV   Statement of the Problem With unchecked climate change and air pollution, the very fabric of life on Earth, including that of humans, is at grave risk. We propose scalable solutions to avoid such catastrophic changes. There is less than a decade to put these solutions in place to preserve our quality of life for generations to come. The time to act is now. We human beings are creating a new and dangerous phase of Earth’s history that has been termed the Anthropocene. The term refers to the immense effects of human activity on all aspects of the Earth’s physical systems and on life on the planet. We are dangerously warming the planet, leaving behind the climate in which civilization developed. With accelerating climate change, we put ourselves at grave risk of massive crop failures, new and re-emerging infectious diseases, heat extremes, droughts, mega-storms, floods and sharply rising sea levels. The economic activities that contribute to global warming are also wreaking other profound damages, including air and water pollution, deforestation, and massive land degradation, causing a rate of species extinction unprecedented for the past 65 million years, and a dire threat to human health through increases in heart disease, stroke, pulmonary disease, mental health, infections and cancer. Climate change threatens to exacerbate the current unprecedented flow of displacement of people and add to human misery by stoking violence and conflict. The poorest of the planet, who are still relying on 19th century technologies to meet basic needs such as cooking and heating, are bearing a heavy brunt of the damages caused by the economic activities of the rich. The rich too are bearing heavy costs of increased flooding, mega-storms, heat extremes, droughts and major forest fires. Climate change and air pollution strike down the rich and poor alike. Principal Findings
  • Burning of fossil fuels and solid biomass release hazardous chemicals to the air.
  • Climate change caused by fossil fuels and other human activities poses an existential threat to Homo sapiens and contributes to mass extinction of species. In addition, air pollution caused by the same activities is a major cause of premature death globally.
Supporting data are summarized in the attached background section. Climate change and air pollution are closely interlinked because emissions of air pollutants and climate-altering greenhouse gases and other pollutants arise largely from humanity’s use of fossil fuels and biomass fuels, with additional contributions from agriculture and land-use change. This interlinkage multiplies the costs arising from our current dangerous trajectory, yet it can also amplify the benefits of a rapid transition to sustainable energy and land use. An integrated plan to drastically reduce climate change and air pollution is essential.
  • Regions that have reduced air pollution have achieved marked improvements in human health as a result.
We have already emitted enough pollutants to warm the climate to dangerous levels (warming by 1.5°C or more). The warming as well as the droughts caused by climate change, combined with the unsustainable use of aquifers and surface water, pose grave threats to availability of fresh water and food security. By moving rapidly to a zero-carbon energy system – replacing coal, oil and gas with wind, solar, geothermal and other zero-carbon energy sources, drastically reducing emissions of all other climate altering pollutants and by adopting sustainable land use practices, humanity can prevent catastrophic climate change, while cutting the huge disease burden caused by air pollution and climate change.
  • We advocate a mitigation approach that factors in the low probability-high impact warming projections such as the one in twenty chances of a 6°C warming by 2100.
Proposed Solutions We declare that governments and other stakeholders should urgently undertake the scalable and practical solutions listed below: 1. Health must be central to policies that stabilize climate change below dangerous levels, drive zero-carbon as well as zero-air pollution and prevent ecosystem disruptions. 2. All nations should implement with urgency the global commitments made in Agenda 2030 (including the Sustainable Development Goals) and the Paris Climate Agreement. 3. Decarbonize the energy system as early as possible and no later than mid-century, shifting from coal, oil and gas to wind, solar, geothermal and other zero-carbon energy sources; 4. The rich not only expeditiously shift to safe energy and land use practices, but also provide financing to the poor for the costs of adapting to climate change; 5. Rapidly reduce hazardous air pollutants, including the short-lived climate pollutants methane, ozone, black carbon, and hydro fluorocarbons; 6. End deforestation and degradation and restore degraded lands to protect biodiversity, reduce carbon emissions and to absorb atmospheric carbon into natural sinks; 7. In order to accelerate decarbonization there should be effective carbon pricing informed by estimates of the social cost of carbon, including the health effects of air pollution; 8. Promote research and development of technologies to remove carbon dioxide directly from the atmosphere for deployment if necessary; 9. Forge collaboration between health and climate sciences to create a powerful alliance for sustainability; 10. Promote behavioral changes beneficial for human health and protective of the environment such as increased consumption of plant-based diets; 11. Educate and empower the young to become the leaders of sustainable development; 12. Promote an alliance with society that brings together scientists, policy makers, healthcare providers, faith/spiritual leaders, communities and foundations to foster the societal transformation necessary to achieve our goals in the spirit of Pope Francis’s encyclical Laudato Si’. To implement these 12 solutions, we call on health professionals to: engage, educate and advocate for climate mitigation and undertake preventive public health actions vis-à-vis air pollution and climate change; inform the public of the high health risks of air pollution and climate change. The health sector should assume its obligation in shaping a healthy future. We call for a substantial improvement in energy efficiency; and electrification of the global vehicle fleet and all other downstream uses of fossil fuels. Ensure clean energy benefits also protect society’s most vulnerable communities. There are numerous living laboratories including tens of cities, many universities, Chile, California and Sweden, who have embarked on a pathway to cut both air pollution and climate change. These thriving models have already created 8 million jobs in a low carbon economy, enhanced the wellbeing of their citizens and shown that such measures can both sustain economic growth and deliver tangible health benefits for their citizens. Acknowledgements We especially thank the global leaders who spoke at the workshop: Honorable Jerry Brown, Governor of California, Honorable Governor Alberto Rodríguez Saá, the Governor of San Luis, Argentina, Honorable Dr. Marcelo Mena, Minister of Environment of Chile, Honorable Kevin de León, President Pro Tempore of California Senate, and Honorable Scott Peters of the US house of representatives. We also thank the contributions of the faith leaders: Rev Leith Anderson, President of the National Association for Evangelicals, USA; Rev Alastair Redfern, Bishop of Derby, UK; Rev Mitch Hescox, CEO of Evangelical Environmental Network, USA. We thank Dr. Jeremy Farrar, CEO of the Wellcome Trust for his contributions as a speaker and for thoughtful edits of the document. We acknowledge the major contributions to the drafting of the declaration by Drs: Maria Neira (WHO), Andy Haines (London School of Hygiene and Tropical Medicine) and Jos Lelieveld (Max Planck Inst of Chemistry, Mainz). For a list of speakers and panelists at the symposium, please see the agenda of the meeting attached at the end of this document. We are thankful to the sponsors of the workshop: Maria Neira of WHO; Drs Bess Marcus and Michael Pratt of Institute of Public Health at the University of California at San Diego; Drs Erminia Guarneri and Rauni King of the Miraglo Foundation. End of Declaration What follows is a summary of the data and concepts on air pollution and climate change as described at the workshop; the last IPCC report published in 2013; and the new data that were published since 2013, including several reports by the LANCET commissions and WHO. The full declaration with author names can be found here.
SIGNATORIES (Pontifical Academy of Science members underlined)
  1. Monsignor Marcelo Sánchez Sorondo (PAS Chancellor)
  2. Joachim von Braun (PAS President & UOB)
  3. Veerabhadran Ramanathan (PAS & UCSD)
  4. Partha Dasgupta (PASS & CU)
  5. Peter Raven (PAS & MBC)
  6. Jeffrey Sachs (UN SDSN)
  7. Edmund G. Brown Jr. (Governor of California)
  8. Kevin de León (President of the California State Senate)
  9. The Rev. Mitchell C. Hescox (President/CEO, The Evangelical Environmental Network)
  10. Werner Arber (PAS)
  11. Yuan T. Lee (PAS)
  12. John (Hans Joachim) Schellnhuber (PAS)
  13. Ignacio Rodríguez Iturbe (PAS & Distinguished University Professor and TEES Distinguished Research Professor, Texas A&M University)
  14. Francis L. Delmonico (PAS)
  15. Dr. Wael Al-Delaimy (UCSD Institute for Public Health)
  16. Fonna Forman (UCSD Center on Global Justice)
  17. Erminia M Guarneri (President Academy of Integrative Health and Medicine, Treasurer Miraglo Foundation)
  18. Howard Frumkin (University of Washington School of Public Health)
  19. Ulrich Pöschl (Max Planck Institute for Chemistry)
  20. Daniel M. Kammen (Professor of Energy, UC Berkeley)
  21. Nithya Ramanathan (Nexleaf Analytics)
  22. Marcelo M. Suárez-Orozco, UCLA Wasserman Dean & Distinguished Professor of Education
  23. Bess H. Marcus (Dean, Brown University School of Public Health)
  24. Jonathan M. Samet (Dean, Colorado School of Public Health)
  25. Glen G. Scorgie (Professor of Theology and Ethics, Bethel Seminary San Diego)
  26. Conrado Estol (Director, Heart and Brain Medicine -MECyC, Buenos Aires, Argentina)
  27. Edward Maibach (George Mason University)

Pontifical Academy of Sciences: Declaration of Health

DECLARATION: OUR PLANET, OUR HEALTH, OUR RESPONSIBILITY
This declaration is based on the data and concepts presented at the workshop: Screen Shot 2017-11-07 at 7.03.24 AM

 Some forms of pollution are part of people’s daily experience. Exposure to atmospheric pollutants produces a broad spectrum of health hazards, especially for the poor, and causes millions of premature deaths. People take sick, for example, from breathing high levels of smoke from fuels used in cooking or heating. There is also pollution that affects everyone, caused by transport, industrial fumes, substances which contribute to the acidification of soil and water, fertilizers, insecticides, fungicides, herbicides and agrotoxins in general. Technology, which, linked to business interests, is presented as the only way of solving these problems, in fact proves incapable of seeing the mysterious network of relations between things and so sometimes solves one problem only to create others.

O God of the poor, Help us to rescue the abandoned and forgotten of this earth, So, precious in your eyes. Bring healing to our lives, That we may protect the world and not prey on it, That we may sow beauty, not pollution and destruction.

Pope Francis, Laudato si’

  Statement of the Problem With unchecked climate change and air pollution, the very fabric of life on Earth, including that of humans, is at grave risk. We propose scalable solutions to avoid such cat- astrophic changes. There is less than a decade to put these solutions in place to preserve our quality of life for genera- tions to come. The time to act is now. We human beings are creating a new and dangerous phase of Earth’s history that has been termed the Anthro- pocene. The term refers to the immense e ects of human activity on all aspects of the Earth’s physical systems and on life on the planet. We are dangerously warming the planet, leaving behind the climate in which civilization developed. With accelerating climate change, we put ourselves at grave risk of massive crop failures, new and re-emerging infectious diseases, heat extremes, droughts, mega-storms, oods and sharply rising sea levels. The economic activities that contribute to global warming are also wreaking other profound damages, including air and water pollution, deforestation, and massive land degrada- tion, causing a rate of species extinction unprecedented for the past 65 million years, and a dire threat to human health through increases in heart disease, stroke, pulmo- nary disease, mental health, infections and cancer. Climate change threatens to exacerbate the current unprecedent- ed ow of displacement of people and add to human mis- ery by stoking violence and con ict. The poorest of the planet, who are still relying on 19th century technologies to meet basic needs such as cooking and heating, are bearing a heavy brunt of the damages caused by the economic activities of the rich. The rich too are bearing heavy costs of increased ooding, mega-storms, heat extremes, droughts and major forest fres. Climate change and air pollution strike down the rich and poor alike. Principal Findings
  • Burning of fossil fuels and solid biomass release haz- ardous chemicals to the air.
  • Climate change caused by fossil fuels and other hu- man activities poses an existential threat to Homo sapiens and contribute to mass extinction of species. In addition, air pollution caused by the same activi- ties is a major cause of premature death globally.
Supporting data are summarized in the attached background section. Climate change and air pollution are closely interlinked because emissions of air pollutants and climate-altering greenhouse gases and other pollutants arise largely from humanity’s use of fossil fuels and bio- mass fuels, with additional contributions from agriculture and land-use change. This interlinkage multiplies the costs arising from our current dangerous trajectory, yet it can also amplify the benefits of a rapid transition to sustainable energy and land use. An integrated plan to drastically reduce climate change and air pollution is essential.
  • Regions that have reduced air pollution have achieved marked improvements in human health as a result.
We have already emitted enough pollutants to warm the climate to dangerous levels (warming by 1.5°C or more). The warming as well as the droughts caused by climate change, combined with the unsustainable use of aquifers and surface water, pose grave threats to availability of fresh water and food security. By moving rapidly to a zero-car- bon energy system – replacing coal, oil and gas with wind, solar, geothermal and other zero-carbon energy sources, drastically reducing emissions of all other climate altering pollutants and by adopting sustainable land use practices, humanity can prevent catastrophic climate change, while cutting the huge disease burden caused by air pollution and climate change.
  • We advocate a mitigation approach that factors in the low probability-high impact warming projections such as the one in twenty chances of a 6°C warming by 2100.
Proposed Solutions We declare that governments and other stakeholders should urgently undertake the scalable and practical solu- tions listed below: 1. Health must be central to policies that stabilize climate change below dangerous levels, drive ze- ro-carbon as well as zero-air pollution and prevent ecosystem disruptions. 2. All nations should implement with urgency the glob- al commitments made in Agenda 2030 (including the Sustainable Development Goals) and the Paris Climate Agreement. 3. Decarbonize the energy system as early as possible and no later than mid-century, shifting from coal, oil and gas to wind, solar, geothermal and other ze- ro-carbon energy sources; 4. The rich not only expeditiously shift to safe energy and land use practices, but also provide nancing to the poor for the costs of adapting to climate change; 5. Rapidly reduce hazardous air pollutants, including the short-lived climate pollutants methane, ozone, black carbon, and hydro uorocarbons; 6. End deforestation and degradation and restore de- graded lands to protect biodiversity, reduce carbon emissions and to absorb atmospheric carbon into natural sinks;
7. In order to accelerate decarbonization there should be e ective carbon pricing informed by estimates of the social cost of carbon, including the health ef- fects of air pollution; 8. Promote research and development of technologies to remove carbon dioxide directly from the atmos- phere for deployment if necessary; 9. Forge collaboration between health and climate scienc- es to create a powerful alliance for sustainability; 10. Promote behavioral changes bene cial for human health and protective of the environment such as increased consumption of plant-based diets; 11. Educate and empower the young to become the leaders of sustainable development; 12. Promote an alliance with society that brings togeth- er scientists, policy makers, healthcare providers, faith/spiritual leaders, communities and founda- tions to foster the societal transformation necessary to achieve our goals in the spirit of Pope Francis’s en- cyclical Laudato Si’.
To implement these 12 solutions, we call on health professionals to: engage, educate and advocate for cli- mate mitigation and undertake preventive public health actions vis-à-vis air pollution and climate change; inform the public of the high health risks of air pollution and cli- mate change. The health sector should assume its obliga- tion in shaping a healthy future. We call for a substantial improvement in energy e ciency; and electri cation of the global vehicle eet and all other downstream uses of fossil fuels. Ensure clean energy bene ts also protect so- ciety’s most vulnerable communities. There are numerous living laboratories including tens of cities, many universi- ties, Chile, California and Sweden, who have embarked on a pathway to cut both air pollution and climate change. These thriving models have already created 8 million jobs in a low carbon economy, enhanced the wellbeing of their citizens and shown that such measures can both sustain
economic growth and deliver tangible health bene ts for their citizens. Acknowledgements We especially thank the global leaders who spoke at the workshop: Honorable Jerry Brown, Governor of California, Honorable Governor Alberto Rodríguez Saá, the Governor of San Luis, Argentina, Honorable Dr. Marcelo Mena, Argentine Minister of Environment of Chile, Honorable Kevin de León, President Pro Tempore of California Senate, and Honorable Scott Peters of the US house of representatives. We also thank the contributions of the faith leaders: Rev Leith Anderson, President of the National Association for Evangelicals, USA; Rev Alastair Redfern, Bishop of Derby, UK; Rev Mitch Hescox, CEO of Evangelical Environmental Net- work, USA. We thank Dr. Jeremy Farrar, CEO of the Wellcome Trust for his contributions as a speaker and for thoughtful ed- its of the document. We acknowledge the major contributions to the drafting of the declaration by Drs: Maria Neira (WHO), Andy Haines (London School of Hygiene and Tropical Medicine) and Jos Lelieveld (Max Planck Inst of Chemistry, Mainz). For a list of speakers and panelists at the symposium, please see the agenda of the meeting attached at the end of this document. We are thankful to the sponsors of the workshop: Maria Neira of WHO; Drs Bess Marcus and Michael Pratt of Institute of Public Health at the University of California at San Diego; Drs Erminia Guarneri and Rauni King of the Miraglo Foundation. End of Declaration   Screen Shot 2017-11-07 at 6.43.43 AM

Modeling the Clean Energy Transition in China

2017-9-12-Chengdu-Summit Portrait Amid growing California-China clean energy partnerships RAEL is partnering with both research and deployment partners in China to accelerate the decarbonization agenda.  In efforts with Tsinghua UniversityChongqing University, and North China Electric Power University, among other academic partners, as well as with local and federal partners in China, RAEL is working to accelerate the deployment of electric transportation, address air and water pollution, and to explore alternatives to the development-environmental degradation nexus.  RAEL doctoral student Anne-Perrine Avrin, who spoke on here work at a recent RAEL Lunch Seminar, is currently working with colleagues in China on electric vehicle adoption strategies (of the 2 million electric vehicles in use world-wide, 1 million are in China and over 200,000 are in California). Screen Shot 2017-09-02 at 10.04.17 AM

Proceedings of the National Academy publishes our critique of “WWS” model

Our paper now available from the Proceedings of the National Academy of Sciences: Previous analyses have found that the most feasible route to a low-carbon energy future is one that adopts a diverse portfolio of technologies. In contrast, Jacobson et al. (2015) consider whether the future primary energy sources for the United States could be narrowed to almost exclusively wind, solar, and hydroelectric power and suggest that this can be done at “low-cost” in a way that supplies all power with a probability of loss of load “that exceeds electric-utility-industry standards for reliability”. We find that their analysis involves errors, inappropriate methods, and implausible assumptions. Their study does not provide credible evidence for rejecting the conclusions of previous analyses that point to the benefits of considering a broad portfolio of energy system options. A policy prescription that overpromises on the benefits of relying on a narrower portfolio of technologies options could be counterproductive, seriously impeding the move to a cost effective decarbonized energy system. Or, download it from the RAEL Publications page: here. Press coverage of this paper: June 20, 2017 - Power Magazine: "Experts debunk 100% Renewable Energy Decarbonization Study by WWS Team" June 20, 2017 - The Chicago Tribune: "A bitter scientific debate just erupted over the future of America's power grid" June 20, 2017 - The New York Times: "Fisticuffs Over the Route to a Clean Energy Future" June 19, 2017 - The Washington Post: "A bitter scientific debate just erupted over the future of America's power grid" June 19, 2017 - MIT Technology Review: "Scientists sharply rebut influential renewable energy plan" June 19, 2017 - Science Daily: "Fighting global warming and climate change requires a broad energy portfolio" June 19, 2017 - Greentech Media: "100% renewable energy plan as 'significant shortcomings' say climate and energy experts". Summary: miracle_cartoon  

Despite Its Oil-​​Industry Past, Energy Transitions Commission Foresees A Full-​​Renewables Future

Despite Its Oil-Industry Past, Energy Transitions Commission Foresees A Full-Renewables Future by Jeff McMahon, based in Chicago. Follow Jeff McMahon on FacebookGoogle PlusTwitter, or email him here. Renewables could provide nearly all the power in some regions in less than 20 years, reliably, and at a cost competitive with fossil fuels, according to a report released today by the Energy Transitions Commission. The report's striking confidence in solar and wind is likely to surprise not only critics of those technologies but also environmentalists, who greeted the commission with skepticismwhen it was founded in 2015. The commission was launched by Royal Dutch Shell and includes executives from Shell, GE Oil and Gas, Australia's BHP Billiton, Norway's Statoil and other traditional-energy companies. "We believe that close to zero-carbon power systems with very high levels of intermittent renewable penetration (up to 98% in countries like Germany) could deliver reliable power in many countries at a maximum of $70 per MWh by 2035," the commission states in its flagship report. 960x0   In 2015, Carbon Tracker's Anthony Hobley criticized the ETCbecause of its initial goal to study how to fuel half the power sector with zero-carbon energy sources by 2050, a path that Hobley said would put the world on course for 4˚C of warming. The ETC appears to have raised its ambitions since. Worldwide, zero-carbon sources could represent 80 percent of the global power mix by 2040, the commission now says, with solar and wind comprising the majority of that. That still leaves 20 percent of the world power market to fossil fuels. But that's a big drop from the current state of affairs, in which fossil fuels provide about 80 percent of primary energy production. “We are ambitious but realistic," said commission chairman Adair Turner, a British businessman, via email. "Despite the scale of the challenges facing us, we firmly believe the required transition is technically and economically achievable if immediate action is taken.” When I contacted Carbon Tracker Monday, Hobley had not had an opportunity yet to review the report or comment. The report calls for reducing CO2 emissions more rapidly than the Paris Agreement. Its reliance on solar and wind depends in part on its projection that the cost of batteries will continue to drop. But it stresses there are cheaper means than battery storage to smooth out the intermittent performance of solar and wind. It cites a suite of technologies and techniques, including:

  • demand management, especially of industry

  • flexible electric vehicle charging

  • load shifting between regions

  • automated load shifting

  • better grid management

  • large-scale heat storage

  • distributed thermal storage in the built environment

  • compressed air storage

  • hydrogen storage

  • geologic storage

The commission modeled the use of these technologies in California and concluded that if California builds a power system that relies nearly entirely on solar and wind, these lower-cost options could offer the system reliability for almost half the cost of the traditional method of achieving reliability—turning on gas-turbine plants. University of Berkeley energy professor Daniel Kammen has been outlining a similar scenario: "The dramatic ramp up in solar resulted in the dramatic realization that a diverse, decentralized system can provide the same critical features that we think about with a baseload highly centralized system," Kammen said last summer. "Not tomorrow, but in the time frame that we need it, it's absolutely there." It's easier to see how zero-carbon sources can conquer 80 percent of the energy market, the commission concedes, than the last 20 percent. If the world is to keep the global average temperature from rising more than 2º C, the report says, four energy transitions have to be pursued simultaneously in each country:
  1. Decarbonization of the power sector combined with electrification of transportation, buildings and industry.
  2. Decarbonization of activities that cannot be affordably electrified, by using biofuels or hydrogen for heating or by capturing carbon emissions.
  3. Improvements in energy productivity and efficiency.
  4. Optimization of fossil fuels within the constraints of the world's overall carbon budget, including the continued replacement of coal with natural gas, an end to methane leaks and methane flaring at oil fields, and development of carbon capture and storage.
To achieve these transitions, the world needs to change the way it finances energy, and it needs "coherent and predictable" policy from governments, the report says, recommending a price on carbon.
"A meaningful carbon price would help drive a faster and more certain transition."
  By Jeff McMahon, based in Chicago. Follow Jeff McMahon on FacebookGoogle PlusTwitter, or email him here.

We’re placing far too much hope in pulling carbon dioxide out of the air, scientists warn

        The Washington Post, October 13, "We’re placing far too much hope in pulling carbon dioxide out of the air, scientists warn" In the past decade, an ambitious — but still mostly hypothetical — technological strategy for meeting our global climate goals has grown prominent in scientific discussions. Known as “negative emissions,” the idea is to remove carbon dioxide from the air using various technological means, a method that could theoretically buy the world more time when it comes to reducing our overall greenhouse-gas emissions. Screen Shot 2016-10-16 at 11.28.55 PM Recent models of future climate scenarios have assumed that this technique will be widely used in the future. Few have explored a world in which we can keep the planet’s warming within at least a 2-degree temperature threshold without the help of negative-emission technologies. But some scientists are arguing that this assumption may be a serious mistake. In a new opinion paper, published Thursday in the journal Science, climate experts Kevin Anderson of the University of Manchester and Glen Peters of the Center for International Climate and Environmental Research have argued that relying on the uncertain concept of negative emissions as a fix could lock the world into a severe climate-change pathway. “[If] we behave today like we’ve got these get-out-of-jail cards in the future, and then in 20 years we discover we don’t have this technology, then you’re already locked into a higher temperature level,” Peters said. Many possible negative-emission technologies have been proposed, from simply planting more forests (which act as carbon sinks) to designing chemical reactions that physically take the carbon dioxide out of the atmosphere. The technology most widely included in the models is known as bioenergy combined with carbon capture and storage, or BECCS. In a BECCS scenario, plants capture and store carbon while they grow — removing it from the atmosphere, in other words — and then are harvested and used for fuel to produce energy. These bioenergy plants will be outfitted with a form of technology known as carbon capture, which traps carbon dioxide emissions before they make it into the atmosphere. The carbon dioxide can then be stored safely deep underground. Even more carbon is then captured when the plants grow back again.

The idea sounds like a win-win on paper, allowing for both the removal of carbon dioxide and the production of energy. But while more than a dozen pilot-scale BECCS projects exist around the world, only one large-scale facility currently operates. And scientists have serious reservations about the technology’s viability as a global-scale solution. First, the sheer amount of bioenergy fuel required to suit the models’ assumptions already poses a problem, Peters told The Washington Post. Most of the models assume a need for an area of land at least the size of India, he said, which prompts the question of whether this would reduce the area available for food crops or force additional deforestation, which would produce more carbon emissions. When it comes to carbon capture and storage, the technology has been used already in at least 20 plants around the world, not all of them devoted to bioenergy. In fact, carbon capture and storage can be applied in all kinds of industrial facilities, including coal-burning power plants or oil and natural gas refineries. But the technology has so far failed to take off. “Ten years ago, if you looked at the International Energy Agency, they were saying by now there would be hundreds of CCS plants around the world,” Peters said. “And each year the IEA has had to revise their estimates down. So CCS is one of those technologies that just never lives up to expectations.” This is largely a market problem, according to Howard Herzog, a senior research engineer and carbon capture expert at Massachusetts Institute of Technology.
“There’s no doubt you can do it,” he said. “We have coal plants that do CCS, you can have biomass that can do CCS — the technology’s not a big deal. The question is the economics.” Because it’s more expensive to produce energy with carbon capture than without it, there’s little incentive for the private sector to invest in the technology without a more aggressive policy push toward curtailing emissions, he pointed out. A carbon price, for instance, would be one way of creating a market for the technology. It’s not that the modelers have no reason for incorporating BECCS so heavily, though. Over a long enough time period, and at the scale needed to make a dent in our global climate goals — especially assuming a high enough carbon price in the future — it may be the cheapest mitigation technology, Peters said. But this may not be enough for policymakers to invest in its advancement now. “Decision-makers today don’t optimize over the whole century,” he said. “They’re not asking: What technology can I put in place now to make a profit in 100 years? So the sort of strategic thinking in the model is different from strategic thinking in practice.” Additionally, the models that are commonly relied on to project future climate and technological scenarios assume that the CCS technique works perfectly within the next few decades, when it’s only just emerging. “The models don’t have technical challenges; they don’t run into engineering problems; the models don’t have cost overruns,” Peters said. “Everything works as it should work in the model.” The bottom line, he and Anderson note in their paper, is that all these assumptions make for a huge gamble. If policymakers decide we’re going to meet our climate goals only with the aid of negative-emission technologies, and then these technologies fail us in the future, we will already be locked into a high-temperature climate scenario. In this light, the authors write, “negative-emission technologies should not form the basis of the mitigation agenda.” Indeed, they conclude, nations should proceed as though these technologies will fail, focusing instead on aggressive emissions-reduction policies for the present, such as the continued expansion of renewable energy sources. Other scientists agree. Daniel Kammen, an energy professor at the University of California in Berkeley and director of the Renewable and Appropriate Energy Laboratory, has published several recent papers on BECCS technology, and agrees that it is “nowhere near ready to be considered a component of a viable carbon reduction strategy.” For Kammen and RAEL's papers on BECCS using both the  SWITCH model and based on a chemical engineering feasibility assessment, see:  the RAEL publications link, here.
Herzog also agreed that “the focus of today should be on mitigation as opposed to worrying about negative emissions sometime in the future.” In the future, he said, as we approach the end of our decarbonization schemes, negative emissions could still have a place when it comes to offsetting carbon from those last activities it’s most difficult or most expensive to decarbonize. But Herzog added that, in his opinion, we’ve likely already overshot a 2-degree temperature threshold, to say nothing of the more ambitious 1.5-degree target described in the Paris climate agreement. At the very least, he noted, a reliance on renewables alone would be unlikely to get us there, if it were still possible. Indeed, multiple recent analyses have suggested that the combined pledges of individual countries participating in the Paris Agreement — very few of which have even considered negative emissions — still fall short of our temperature goals. “I think what you’re going to see in the long run is a mix of technologies coming in to help solve the problem,” he said. “You need a mix of renewables, efficiency, nuclear, CCS, lifestyle changes — just a whole litany.”

New York Times: Testing the Clean-​​Energy Logic of a Tesla-​​SolarCity Merger

For the full article: http://www.nytimes.com/2016/06/24/business/energy-environment/testing-the-clean-energy-logic-of-a-tesla-solarcity-merger.html?_r=0  

Elon Musk, chief executive of Tesla and chairman of SolarCity, says he wants to create the “world’s only vertically integrated energy company” with the merger of the two companies. CreditJustin Sullivan/Getty Images 

Imagine a world in which every home and building is a miniature power plant, with solar panels on the roofs and electric vehicles and stationary battery banks in the garages.

Meters and software would manage the flow of power, allowing homeowners and businesses to seamlessly buy and sell electricity at the best prices, simultaneously lowering their costs and raising the amount of green energy on the grid.

That’s the long-term vision behind the plan that Elon Musk described late Tuesday, explaining the rationale for Tesla to acquire SolarCity and create the “world’s only vertically integrated energy company.’’And it may very well become reality, whether in years or decades, and whether Mr. Musk’s version of the vision is one that proves viable.

Still, if Mr. Musk and his cousins, Lyndon and Peter Rive, can trounce the competition and surmount their financial woes — and those are very big ifs — the integrated company they are trying to assemble could be in a position to dominate.

“This is an effort to build the Apple of clean energy,” said Daniel M. Kammen, the director of the Renewable and Appropriate Energy Laboratory at the University of California, Berkeley. “That really is part of the new wave of companies that could make this decarbonization addressing climate change really work.”

Wall Street, at least for the moment, is not on board.

SolarCity’s stock, which has been trading at roughly a quarter of its peak value in recent months, rose after the announcement. But Tesla’s has tumbled. Several analysts and investors have questioned the wisdom of adding to both companies’ financial pressures — between them the companies lost more than $1.6 billion last year — and potentially distracting Tesla from building its enormous battery factory in Nevada and bringing its first moderately priced car to market next year.

Even some energy analysts say the proposed acquisition is at least as much about helping Mr. Musk’s personal investments as furthering his green agenda. But, some energy experts and investors say, there is logic in combining Tesla, where Mr. Musk is chief executive, and SolarCity, where he is chairman.

Describing Tesla automobiles as “batteries wrapped in a car,” Shawn Kravetz, founder of the solar power investment company Esplanade Capital, said that the energy storage business was likely to become colossal. “And so you can see,’’ he said, ‘‘how the electricity to power those batteries can be an essential part of this.”

The two companies have been moving toward a closer partnership for some time. SolarCity began installing Tesla batteries in pilot projects for residential and commercial customers about four years ago. Last year, Tesla announced its move to market rechargeable lithium-ion battery packs that could mount to a home garage wall, as well as battery blocks large enough to power commercial and industrial customers and serve in utility-scale installations to smooth out fluctuations in the grid.

At the same time, SolarCity, after years of challenging the utility industry to innovate or die, started acting more like a utility itself. It began a program aimed at cities, remote communities, campuses and military bases to design and operate small, independent power networks called microgrids. At the time, Peter Rive, one of the company’s founders and its chief technical officer, called the system “a template that can be scaled up to basically be the next-generation grid.”

As the leading rooftop solar provider in the country, SolarCity is thought to have the largest collection of data on how solar customers use energy at every minute of the day. With that data — especially if combined with information from electric cars, chargers and stationary batteries — the combined company could be well suited to creating products and services based on customer needs.

“They deeply understand what the customer’s usage patterns are,” said Swapnil Shah, chief executive of FirstFuel Software, which provides energy management services to buildings. He compared the potential to Amazon’s ability to adapt and customize online shopping to buyer’s behavior.

“They’re creating unique personalized profiles of your habits,’’ Mr. Shah said, “and they use that to identify what is the next click for the next product.”

And yet, while SolarCity was building the infrastructure for a new, decentralized approach to power production known as distributed generation, while earning a reputation for aggressive attacks on the old-school utility industry, Mr. Musk was turning Tesla into “the brand that everyone wants to buy,” Mr. Kammen said. That brand burnishing is something that could benefit SolarCity, he said.

But a big challenge for Tesla, said Shayle Kann of GTM Research, which focuses on clean energy industries, is that it is not the only company with such a grand vision. Utility industry stalwarts like Edison International and Con Edison are developing energy services and consulting divisions, while technology giants like General Electric, Oracle, Google and even Apple are getting into the business of providing or managing power.

Of course, the merger plan may not go through, if other investors balk and because of the corporate governance and other issues arising from Mr. Musk’s roles in both companies. He also owns more than 20 percent of each. But maybe a merger isn’t necessary to achieve the larger goals.

“Do you have to own things in order to leverage or even to a certain extent control them?” Mr. Kravetz of Esplanade Capital asked. “I think the answer is no. You don’t have to own the cow to get the milk.”

Main Menu
RAEL Info

Energy & Resources Group
310 Barrows Hall
University of California
Berkeley, CA 94720-3050
Phone: (510) 642-1640
Fax: (510) 642-1085
Email: ergdeskb@berkeley.edu


Projects

  • Open the Main Menu
  • People at RAEL

  • Open the Main Menu