Search Results for 'Clean village energy'

US, China [can] cooperate on green energy in rural areas

For the original click here, or navigate to China Daily:  https://www.chinadaily.com.cn/a/202310/16/WS652c910da31090682a5e8aeb.html  

US, China cooperate on green energy in rural areas

By MINGMEI LI in New York | Xinhua | 
Innovation in rural area-green energy development and boosting collaboration between the United States and China in science and technology are being emphasized at a "smart village" forum. More than 50 experts, professors, local entrepreneurs, environmental and social organizations from many countries are participating in the Institute of Electrical and Electronics Engineers Smart Village Forum (ISV) in Shanxi province on Sunday and Monday. Participants in the forum, titled "Green Low-Carbon and Smart Village", discussed environmental governance topics such as achieving energy transition, using advanced technology to assist poverty-stricken regions globally in accessing affordable and clean energy, improving energy efficiency, and promoting green and sustainable development. A new demonstration project in Changzhi, a city in southeast Shanxi province, was featured at the forum, showcasing the current progress and practical results achieved by ISV. The project has effectively incorporated solar photovoltaic power and clean-heating technologies and products for residents. The ISV working group has partnered with leading Chinese and international higher-education institutions to create energy models and projects suited to specific local conditions in other cities such as Chongqing, Gansu and Heilongjiang. Daniel Kammen, a Nobel Peace Prize laureate and energy professor at the University of California, Berkeley, and his laboratory, have worked closely with scholars and students from Tsinghua University, Chongqing University and North China Electric Power University to research renewable energy conservation and intelligent models from an academic perspective. 1cf2cd7e6576ee0cecd9c39c6eb4a1f7 "We develop mathematical models of the grid. There's lots of interesting physics. There's lots of interesting science. My partnerships in China have been very productive," Kammen told China Daily. "Low-cost solar, better batteries and smart sensors. We build models that become real. My laboratory is very much based around not just basic science, but also the mission of decarbonizing the power grid and making our economy green. "Just like the tensions that existed between the Soviet Union and the US over politics and geopolitics in the '70s and '80s, one lesson that I think scientists learned on both sides, both in the Soviet Union and in the US, is that we need to keep the scientific channels open," he said. Kammen said that science cooperation and exchange are important at this moment. "The US and China are the G2. I like to say we are the G2 of energy, the two biggest consumers of energy and the two biggest polluters in terms of greenhouse gases," he said. "There is no climate solution unless the US and China find ways to work through their differences." "This is a technology exchange and a global need. We are working on clean energy under climate change and fulfilling the need for decarbonization," said Xiaofeng Zhang, the vice-president of ISV and president of Global Green Development Alliance. The ISV has extended its efforts not only within China but also across diverse regions, including Africa, Latin America, South Asia and North America, with the primary focus on delivering eco-friendly and cost-effective energy solutions to underprivileged communities who have limited access to environmental resources. "We are doing more than only energy transferring, but also internet, electrical machinery, telecommunications and telemedicine. We introduce all of these based on the community's needs," said Rajan Kapur, the president of ISV. "We ask the community what they want to do, and based on that, we tell them what technology might be appropriate, what technology can be locally sourced." ISV is also collaborating with Chinese local companies and organizations. "It is also a business-development cooperation, because when you take technology and introduce it into society, you cannot just drop it over there," he said. "The capacity does not exist to use the technology; the infrastructure does not exist. So we also help with the business modeling, the governance of the enterprises that get set up," he said. Kapur said that what they are trying to do is to have a long-term impact, and ISV has not only created scientific and business models in those regions but also has deployed supportive equipment for more than 20 or 30 years. He emphasized that ISV's ultimate objective is to ensure affordable and clean energy access for 1 billion people worldwide through technology and cooperation between the US and China. Additionally, ISV expects to leverage its resources to assist local communities and businesses in achieving sustainable economic growth and regionwide improvements. "What we should remember is that it is advancing technology for all of humanity," Kapur said.
 

Climate Change is an Energy Problem. Here’s How We Solve It.

For the California Magazine article, click here.  

Count on comedians to nail the zeitgeist.

I’m thinking of comics like Marc Maron, whose act riffs off existential pain points like mortality, antisemitism, the delaminating geopolitical situation, and, of course, that multigigaton carbon elephant in the room, climate change. “The reason we’re not more upset about the world ending environmentally, I think, is that, you know, all of us in our hearts really know that we did everything we could,” Maron deadpans. “We brought our own bags to the supermarket,” he says, then pauses a few beats. “Yeah, that’s about it.” No surprise that comedians are able to play our eco-dread for yuks. Comedy is often rooted in the fertile manure of uncomfortable truths: we laugh so we don’t sob. And that’s all fine and good; laughter’s a good antidote to the malaise that comes from doomscrolling our newsfeeds day in, day out. But are we really ready to throw in the towel and laugh ourselves into oblivion? And is Maron correct? Have we really done nothing to confront our foremost environmental crisis? Hardly. True, we haven’t yet reversed the upward trend in greenhouse gas emissions, and the challenge of transitioning away from fossil fuels often seems insurmountable. Is it, though? According to Berkeley experts interviewed for this story, there’s reason for hope that we’ll make it through the bottleneck yet. The technology is already here and improving all the time. It won’t be easy, but it is doable. Now, let’s see how:

SOLAR

a statue of a man holding up a disco ball
If you’re looking for a peg to hang your hopes on, start with energy economics and, in particular, the price of solar panels. Costs have dropped by nearly 90 percent since 2009, driven by both improved technology and global production (particularly from China). In 1976, solar electricity cost $106 a watt; today, it costs less than 50 cents per watt. Bottom line: Solar is now competitive with fossil fuels as a means of energy production. While solar still only accounts for 3.4 percent of domestic energy consumption, production has been growing by more than 20 percent annually over the past five years, and likely would have been higher if not for shipping and supply chain difficulties stemming from the pandemic. Production isn’t everything, however. For widespread adoption, an energy source must be available on demand. And it’s here that fossil fuels have a big leg up. Natural gas or coal can be burned at any time to generate electricity as required. Solar panels produce only when the sun shines. Storing adequate energy for later use—i.e., at night or on cloudy days—has long posed a major obstacle.
Solar production has been growing by more than 20 percent annually over the past five years, and likely would have been greater but for the pandemic.
Not anymore, says Daniel Kammen, the founding director of Cal’s Renewable and Appropriate Energy Laboratory and a professor in the Energy and Resources Group and the Goldman School of Public Policy. A coordinating lead author of the Intergovernmental Panel on Climate Change since 1999, he shared in the 2007 Nobel Peace Prize. “I don’t see storage as a major problem at this point,” Kammen says. “It’s not a single breakthrough that makes me think that way, but more that we’re seeing the same trend in price and performance for storage that we saw with photovoltaics. A variety of approaches are coming to market, and they’re scaling really fast. Things that used to take several years to develop now take a year, and that’s almost certain to continue.” The storage of the future will serve two different sectors, observes Kammen: transportation (think electric vehicles) and everything else (homes, office buildings, factories, etc.).

EVs

a plug cord making the shape of a car
From a climate change point of view, an electrified vehicle fleet is desirable because it dovetails nicely with a green electric grid—i.e., one fed by sustainable energy sources. Currently, cars burning gasoline or diesel spew about 3 gigatons of carbon into the atmosphere each year—about 7 percent of total human-created CO² emissions. Just electrifying roughly a third of China’s vehicle fleet could slash carbon emissions by a gigaton a year by 2040. So there’s a lot at stake with electric vehicles, and everything considered, Kammen is pretty sanguine about their progress. “It’s really been picking up, particularly over the last year,” he says. “It’s probably not a coincidence that gasoline and diesel prices have been spiking at the same time, and I hate to think that the war in Ukraine is part of that, but it probably is.” EVs are now the best-selling cars in California, Kammen continues, “and it’s the same in Norway, and it’ll soon be the same in New York. Prices on EVs are coming down. The trend is strong and accelerating.” EVs generally store energy in batteries that use lithium, a relatively rare element that charges and discharges rapidly and is lightweight—an essential quality for automobiles, where excess weight is anathema. Lithium battery technology is well advanced, and some EVs can now go 400 miles between charging, alleviating earlier anxieties about limited range.
A central goal of the Biden administration is the construction of 500,000 new EV charging stations. For perspective: There are currently fewer than 150,000 gas stations in the entire United States.
The next challenge to overcome is a paucity of charging stations, a reality that still gives Tesla drivers pause before embarking on a long road trip. But that’s being remedied, Kammen says, thanks in significant part to the 2022 Inflation Reduction Act (see sidebar), which provides generous home and business tax credits for new and used EV purchases and fast-charging EV stations. A central goal of the Biden administration is the construction of 500,000 new EV charging stations distributed across all 50 states and the District of Columbia and Puerto Rico by 2030. For a little perspective on how ambitious that number is, consider: There are currently fewer than 150,000 gas stations in the entire United States. “Worries over charging station access are real, there’s no denying it,” says Kammen. “But this legislation, coupled with the fact that recharge times are now very fast, will make a huge difference. The one thing that we still have to address, though, is the social justice component,” as not all zip codes will see the same resources. Without policies to ensure otherwise, Santa Monica will likely have charging stations aplenty; South Central Los Angeles not so much. “We really need to ensure that doesn’t happen,” says Kammen. “First, it’s wrong. Second, to make a real difference, both energy production and transport must progress across a broad scale. That’s an easier case to make when everyone benefits.”

BATTERIES

batteries behind a city skyline
In addition to transportation, urban infrastructure must transition to sustainable, carbon-free energy as well. That will require combining clean energy with adequate storage to provide “grid reliability”—that is, systems that will keep the juice flowing in all seasons, even when the sun is absent or the wind stops blowing. In short, you need really, really big batteries. But what kind of batteries? Lithium-ion batteries, already well established, are one option, says Kammen. But the qualities that make them ideal for vehicles—lightweight, fast charging capabilities—aren’t as critical when you’re trying to light a city at night. For stationary power needs, batteries can be industrial scale—heavy, with a large footprint. Another problem with lithium is its scarcity. The United States currently controls less than 4 percent of global reserves. For that reason alone, researchers are looking for alternatives: batteries that employ cheaper and more readily available elements. One of the most promising approaches, according to several sources, is iron-air batteries. And one of the leaders in the technology is Form Energy, a company headquartered in Massachusetts with satellite facilities in Berkeley. Zac Judkins ’06 is the company’s vice president of engineering. He stresses that Form was obsessed with finding a way to address the problem of multiday storage, not enamored of a particular technology.
Judkins and colleagues evaluated a wide array of candidate chemistries before settling on iron-air batteries, which work by rusting and unrusting thousands of iron pellets with every cycle.
“When we started up in 2017, we saw that the world was rapidly moving to renewables—mainly solar and wind—and setting increasingly ambitious grid reliability and decarbonization goals.” Without effective storage, however, progress was going to hit a brick wall, Judkins says. Analyzing the market, Form’s engineers arrived at a target. They needed to build a battery that could continuously discharge for 100 hours at a total cost of $20 per kilowatt-hour and had a round-trip efficiency (the amount of energy stored in a battery that can later be used) of 50 percent. Those parameters, Judkins says, would allow for very high adoption of renewables with no sacrifice to grid reliability and minimal increase in cost to consumers. “That was the benchmark we had to hit.” Judkins and colleagues evaluated a wide array of candidate chemistries before settling on iron-air batteries, which work by rusting and unrusting thousands of iron pellets with every cycle. Says Judkins, “We didn’t invent the iron-air battery. It was developed by Westinghouse and NASA in the late ’60s and ’70s. They’re not good for cars—they’re not light, and they don’t discharge rapidly. But there are advantages. For one thing, iron is abundant. It’s cheap. We don’t have to worry about supply constraints.” What you also get with iron, says Judkins, is low cost and high energy density—i.e., the amount of juice you can put into the battery. The tradeoff is lower power density—how fast you can pull the energy out relative to volume. “It’s roughly 10 times lower on power density than lithium-ion, but for our needs it’s fine,” says Judkins. “This is storage for large-scale, grid-tied projects.” Take the example of a large photovoltaic array like those on California’s Carrizo Plain. One array there has a 250-megawatt capacity, enough for about 100,000 homes, but only when the sun is shining. At night, during storms, there’s no electricity. But, says Judkins, with the addition of a Form plant with a footprint of 100 acres or so, you could store enough energy to keep the electricity flowing for a four-day period. The company is now transitioning from proof of concept to full production. Ironically, the first commercial rust/unrust battery systems will likely come out of the Rust Belt. “We’re building a factory in West Virginia on a 55-acre site—a former steel plant—that will have approximately 800,000 square feet of production space and employ 750 people at full operation.” Green jobs. Once the plant is fully on its feet, Judkins says, it will produce 50 gigawatt-hours of storage capacity every year.

MICROGRID

In sub-Saharan Africa alone, 600 million people live without electricity. Providing them carbon-free power will require microgrids.
Large, centralized utility grids are naturally the focus for decarbonizing developed countries—but they don’t really apply to parts of the world where access to electricity is still rare. In sub-Saharan Africa alone, 600 million people live without electricity, which doesn’t mean they don’t want it. Providing carbon-free power to these communities will require microgrids: small systems that serve neighborhoods, hamlets, or even multiple villages. But while the microgrid concept has been kicking around for years, its full realization has been elusive—until recently. “What we’re seeing is a meshing of enabling technologies,” says Duncan Callaway, an associate professor of Energy and Resources at Berkeley and a faculty scientist at Lawrence Berkeley National Laboratory. For starters, he points to cheap solar. “With the profound price drop in panels, it’s a truly affordable resource that’s ideally suited for mid-latitude countries,” which experience less seasonality. “In general, you can serve electric demand with solar better in those latitudes than in countries [closer to either pole], where there’s just less sunlight.” Another driver is cheaper, better storage options, Callaway says. For microgrid-scale, lithium-ion batteries work well. And these, too, have grown more affordable. “The explosive growth in electric vehicles really pushed things along,” Callaway says. “Ten years ago, it cost $1,000 for one kilowatt-hour of storage. Now it costs less than $100.” Finally, says Callaway, “smart grid” technologies have been developed that make microgrids, once notoriously balky, highly efficient. “We now have ‘big bucket’ control systems that allow for the smooth coordination of energy production, storage, and demand,” Callaway says. “That makes these small grids both low-cost and really reliable. The goal is to make systems that are truly modular, so you can plug various components into larger systems. That will allow easy customization and scaling.” More than 150 microgrids already are deployed in the United States, powering everything from individual buildings in large cities to small, remote villages in Alaska. As far as widespread adoption goes, Callaway doesn’t foresee many technical difficulties. It’s social and political roadblocks that need to be overcome. “The great thing about microgrids is that they work well in remote, underserved areas and they can be managed locally. But in less developed countries, there are often corrupt governments that want their cut from any project. And if that’s the case, you’d have an inherent bias toward centralized grids with baseline power plants.” It’s a challenge that must be met, says Callaway. “Somehow, some way, small grid technology must be put on a level playing field with the old system, the large, centralized grid—or it’s unlikely to make it, even where it’s clearly the superior choice.”

FUSION

Glowing electric light bulb isolated
Microgrid or macrogrid, we’ll need a lot of clean, sustainable energy flowing through the wires if we’re going to simultaneously sustain an advanced civilization and cool the planet. Kammen is convinced it will largely come from fusion. But by that he means fusion in all its forms, including, as noted, the sun: that massive reactor in the sky that continually fuses hydrogen into heavier elements, releasing 3.8 x 10²6 joules of energy every second. But there’s also that will-o’-the-wisp that’s been tantalizing futurists and physicists for decades: terrestrial fusion reactors. These would use hydrogen—the most common element in the universe—as feedstock to generate gigawatt-hours of cheap energy, producing harmless, inert helium as the primary by-product. (Radioactive tritium would also be generated, but it has a short half-life and it’s consumed by the reactor in a closed-loop process.) Fusion technology remains the Holy Grail of clean, Earth-friendly energy production, but it’s also the butt of waggish comments. The most common is that it looks promising, but it’s 20 years away. And it’s been 20 years away for 60 years. But after a breakthrough on December 5, 2022, at Lawrence Livermore National Laboratory’s National Ignition Facility (NIF), it now seems highly possible that a commercial fusion reactor actually could be available in, uh, well, 20 years. Maybe sooner. Most fusion efforts to date have involved tokamak reactors—toroidal vacuum chambers that corral hydrogen atoms via magnetic coils, subjecting them to heat and pressure until they become plasma, a superheated (as in 150 million degrees Celsius) gas that allows the hydrogen to fuse. This releases energy that transfers as heat to the chamber walls, where it is harvested to produce steam to drive turbines for electricity production.
For the first time on this planet—other than during a thermonuclear explosion—a fusion reaction was created that produced more energy than was required to initiate the process.
Tokamaks have been able to coax hydrogen to fuse for brief periods—indeed, progress has been steady, if plodding, since the first machine was built 60 years ago. But to date, they haven’t been able to achieve “ignition”—that point at which sustained fusion occurs, and more energy is produced by the device than it consumes. NIF took a different approach. Researchers there fabricated a minute pellet from frozen deuterium and tritium (both hydrogen isotopes). They then placed the pellet in a small gold capsule known as a hohlraum, which in turn was situated on an arm in a chamber bristling with 192 lasers. The scientists then fired the lasers simultaneously at the hohlraum, causing the inner capsule to compress. The result: temperatures and pressures exerted on the deuterium/tritium admixture were extreme enough to produce ignition. For the first time on this planet—other than during a thermonuclear explosion—a fusion reaction was created that produced more energy than was required to initiate the process. True, the sustained yield was modest. The reaction lasted less than a billionth of a second and released 3.15 megajoules of energy, or slightly less than one kilowatt-hour. Not very much, in other words; the average American household uses about 900 times that every month. Still, it was 50 percent more energy than was expended by the laser bursts. Progress! But here’s another catch: While the actual laser beams represented only around two megajoules of energy, it took about 300 megajoules to power up and operate the mechanisms that fired the beams. So, there’s still a lot to be done before we’re microwaving our frozen burritos with fusion power. Nevertheless, Kammen, ever the optimist, is fairly sure we will be soon. “Given the trends, I think I’m pretty safe in predicting that we’ll derive about 70 percent of our power from fusion by 2070,” Kammen says. “Half of that will be from the sun and half from fusion power plants.” And while NIF’s laser-blasted pellet approach points to future success, don’t rule out tokamaks. Kammen says he’s “expecting some exciting announcements about tokamak reactors pretty soon.” You heard it here first. Solar fusion, too, will follow multiple avenues toward fuller implementation. “It’s not just rooftop panels in cities and solar farms out on the landscape,” he says. “There’ll also be marine solar—large arrays out in the ocean.” Also: orbital solar. Live trials are now underway at Caltech and the Jet Propulsion Laboratory, says Kammen, to establish large, autonomously assembled (i.e., no live astronauts required) solar arrays in space. The energy would be beamed down as microwaves to terrestrial collectors, where it would be converted to electricity. That may raise the specter of a loose-cannon death ray immolating cities from orbit if something goes awry—but not to worry, says Kammen. “The watt-per-square-meter dose is pretty low, so there’s no danger of anyone getting fried if they’re hit by it.” He also thinks the fusion technology now under development for terrestrial reactors will have applications for space travel. “There’s a dual angle on fusion that’s really catapulting the technology,” Kammen says. “For better or worse, it’s imperative that we colonize the solar system so our fate as a species isn’t completely tied to one planet. Fusion propulsion will be an excellent means for getting us to the moon and Mars and beyond, and fusion—solar, reactor, or both—will also serve as a base-load power source when we get there.”

FISSION

Fission generates a lot of energy from a small footprint. Diablo Canyon, California’s sole nuclear plant, produces almost 10 percent of the total electricity consumed in the state, and it does it within a confine of 600 acres.
With all the fuss over fusion, the other “nuclear” power source, fission, seems to have faded into the background. That’s illusory. Fission is still quite hot, so to speak, with increasing numbers of erstwhile foes in the environmental community now embracing it—or, at least, tacitly supporting it. The reasons are clear. First, fission can generate a great amount of energy on a small footprint. Diablo Canyon, California’s sole operating commercial fission plant, produces almost 10 percent of the electricity consumed in the state and does it within a confine of 600 acres. And from a climate change perspective, nukes are peerless: they emit zero CO². Of course, people remain worried about other kinds of emissions, such as intense radioactivity from long-lived waste isotopes. And older generation plants—that is, most of the ones operating today—are susceptible to core damage to varying degrees, with catastrophic results à la Chernobyl and Fukushima. Those concerns are entrenched, especially in the United States, where environmental issues, regulatory red tape, and simple cost often conspire to scotch large infrastructure projects in the proposal phase. “We’re pretty bad at megaprojects in this country,” says Rachel Slaybaugh, formerly an associate professor in nuclear engineering at Berkeley and now a partner at venture capital firm DCVC. “For one thing, it’s incredibly easy for them to go over budget. Just look at the new Bay Bridge, which ran triple the original estimates.” That problem is compounded for nuclear plants, given heightened safety concerns and the regulations and litigation they engender. But there has been an upside to the impediments imposed on traditional nuclear power, Slaybaugh says: Out of necessity, more efficient—and perhaps more socially acceptable—technology has been developed. The newer reactors are smaller—some much smaller—than the behemoths of yore, and pilot projects are underway. “A good many of these designs originated from basic concepts developed in the 1950s or 1960s, but their refinement and commercial deployment is being driven in large part by our inability to construct large projects,” Slaybaugh says. Different reactors have been designed for different situations, Slaybaugh observes, employing various fuels, coolants, and configurations. Some “breeder” reactors could even burn their own byproducts, greatly reducing radioactive waste. “What’s the priority?” Slaybaugh asks rhetorically. “Economics? Providing high-temperature heat, or balancing renewables on the grid? Minimizing nuclear waste? A combination of different goals? These new designs can be standardized or customized and scaled for the site and requirements, and all involve considerable engineering to ensure safety.” Some of the reactors will be large enough to power a city, or several cities. “And others will be teeny,” Slaybaugh says. “Those will be perfect for remote military bases or research facilities, say Antarctica or the Arctic. You’d eliminate several major problems with one of these very small reactors. Think of the logistical difficulties involved in getting diesel fuel to an arctic base, not to mention the heavy pollution it produces and, of course, the CO² that’s emitted.” Fission technology also has some profound advantages over renewables, she says. “There are real limits to how many solar farms and wind turbines we should or even can build,” she observes. “A lot of materials are required for their production, and a lot of mining is needed to get the necessary elements. And these facilities tend to have very large footprints. I’m actually worried that we’re going to see a strong solar and wind backlash as people really start to understand all the impacts.” Every energy source has strengths and weaknesses, continues Slaybaugh, “and we need to have sophisticated conversations on what they are and where each can best apply. Ultimately, my view of fission is that it’s a necessary tool that we must use in conjunction with other available tools to get the job done as well and as quickly as possible. No single solution is going to work for all scenarios.”

CARBON REMOVAL

At this point, we know what we must do to turn things around. Even better, we have the technologies and techniques to do it. But we need to deploy them.
Reducing carbon emissions is not the complete solution to global warming, say scientists. To really get a handle on the problem, we’ll also need to remove existing CO² from the atmosphere and sequester it permanently in the ground. One option, direct air capture (DAC), is the basis for a small but growing industry: Currently, there are about 20 DAC pilot plants operating, in total capturing and sequestering around .01 megaton of atmospheric CO² annually. According to the International Energy Agency, that storage could grow to 60 megatons a year by 2030, assuming large-scale demonstration plants proceed apace, current techniques are refined, and costs drop as the technology scales. But those are a lot of assumptions for minimal benefit. Granted, a 60-megaton mass of anything is impressive. But from a climate-change perspective, 60 Mt is negligible, given energy-related carbon emissions hit an all-time high of over 36.8 billion tons in 2022. Many researchers think there are better options, and we don’t have to do anything to develop them because they already exist. They point to natural carbon sinks: forests, wetlands, grasslands, and, most significantly, the oceans. These natural systems are part of the Earth’s carbon cycle, which absorbs and releases about 100 gigatons of carbon a year. A planetary mechanism of that scale might seem more than adequate to handle carbon emissions, and it would, if atmospheric CO² only originated from natural emission points such as volcanoes and hydrothermal vents. As noted recently by MIT professor of geophysics Daniel Rothman, natural sources contribute ten times more carbon to the atmosphere than human activities, but it’s the anthropogenic carbon that is pushing the cycle over the edge. The planet can’t process the extra atmospheric carbon back into a stable earthbound state fast enough. This deficit is exacerbated by the fact that we’re degrading our carbon sinks even as we’re pumping more CO2 into the sky. “The ecological services carbon sinks provide are really priceless,” says John Harte, a professor of the Graduate School in Berkeley’s Energy and Resources Group. Harte, who conducted pioneering work on the “feedback” effect a warming climate exerts on natural carbon cycles in high-altitude meadows, observes that carbon sinks were poorly understood 35 years ago. “But we now know they absorb 18 billion tons of CO2 a year. Realistically, we should be putting more of the money we’re devoting to the development of carbon sequestration technology into enhancing natural carbon sinks. At the very least, we need to stop their degradation.” Harte’s work in the Colorado Rockies entailed artificially heating plots of land and tracking changes in vegetation types and carbon sequestration rates. In plots that weren’t heated and experienced climate change in real time, he found that wildflowers dominated, cycling large volumes of carbon into the soil during the short alpine growing season; when the plants died back each fall, the rate of carbon storage dropped off dramatically. But as Harte warmed specific plots over a period of years, woody shrubs replaced the flowering annual plants earlier than on nonheated land. These slower-growing plants sequestered carbon at a much slower rate than the wildflowers. “The ‘money,’ the carbon, in the bank account shrinks,” says Harte. But after about 100 years, you begin to see dividends. “The carbon coming into the soil from woody plants is stored longer, so you eventually still have carbon in the soil.” The goods news: This suggests natural sinks could be managed for optimal storage. But if emissions remain high, they’ll strain and ultimately overwhelm the sequestration capacity of the sinks, negating their value. “If climate change continues, if we don’t cut back on emissions,” says Harte, “there’ll be no way to buffer the effects.” And really, that’s the crux of the whole issue. At this point in the climate change crisis, we know what we must do to turn things around. Even better, we have the technologies and techniques to do it. But we need to deploy them. That means everything: solar in all its forms, from rooftop panels to orbital microwave arrays; wind turbine farms, both on land and at sea; fusion reactors; fission reactors; microgrids; massively distributed storage systems. And we must enhance, not debase, the natural systems that sequester carbon. We need to plant many more trees and manage working forests more sustainably, calculating carbon storage as a product equal to or exceeding board feet of lumber. And we need to protect the greatest carbon sink of them all: the ocean. “I’m terribly worried about the trend toward seabed mining,” says Kammen. “It’s the least regulated of all the new frontiers, some very large companies are pushing it, and it’d be absolutely devastating. If we don’t stop activities like that and if we don’t use all the sustainable energy options that are available, we are risking extinction.” That may not be a very optimistic note to end on, but then, optimism only gets us so far, doesn’t it? What we need now is grit and determination.

How data-driven research partnerships deepen energy access across supply chains

For the GreenBiz article, click here.

Offgrid Box in the field

An unpacked “Box” in the field, providing power for water filtration and clinic electrification. Photo by Sam Miles

   
Access to reliable, affordable and clean energy is increasingly recognized as the "golden thread" tying together and enabling many other Sustainable Development Goals (SDGs). Despite progress over the last decade in making solutions to energy poverty more accessible to the more than 800 million people currently without electricity (and the many more with intermittent or unaffordable energy) many gaps remain. In particular, the COVID-19 crisis has disrupted supply and demand for energy, both of which are necessary to meet SDG 7. At the same time, transitioning to more renewable energy-based electricity systems requiring battery storage, whether in emerging markets or developed ones, will require massive amounts of mineral resources with significant human and environmental footprints. A paper published by USAID in late 2021underscores the urgency of addressing mining in the context of the green energy transition: Recent global studies predict demand increases of up to ten times current production levels for minerals like cobalt, graphite, and lithium. No matter the mix of alternate energy sources the world turns to, the mining sector will be a key player in the years ahead. To meet the ambitious goal of universal modern energy by 2030 — while grappling with the consequences of critical minerals demand growth — harmonized policies, coordinated investment and innovative research are urgently needed. Equally or even more important, however, are the understudied and undersupported partnerships that can catalyze and scale these efforts to make SDG7 both a lifeline and a means of economic empowerment and equity. The Congo Power alliance represents one such innovative coalition approach. Initially launched by Google's Supplier Responsibility team in 2017 to reinforce responsible minerals trade and expand economic opportunity through clean energy, the initiative supports communities committed to the responsible sourcing of minerals that are ubiquitous in electronics and historically tied to conflict and human rights abuses. This mineral trade focuses on tungsten, tin, tantalum, gold and cobalt, making this issue particularly critical in the African Great Lakes Region, where much of the world’s supply of these minerals’ stock lies underground.
A graphic of the Africa Great Lakes region

The African Great Lakes region includes Angola, Burundi, Central African Republic, Republic of the Congo, Democratic Republic of the Congo, Kenya, Uganda, Rwanda, Republic of South Sudan, Sudan, Tanzania and Zambia. Image courtesy of Google, USAID

       
As part of its overarching sustainability strategy, Google committed to maximizing our use of finite resources, which includes supporting in-region programs that reinforce responsible supply chains, and increasing the use of recycled materials. These program commitments are also part of meeting the expectations of Section 1502 of the Dodd-Frank Act, which mandate that all publicly traded companies complete due diligence on their supply chains, and report on those measures. In line with these commitments, the Congo Power team has invested in 14 community projects since 2017 and has brought a broad group of stakeholders along. On a Public-Private Alliance for Responsible Minerals Trade (PPA) delegation with the U.S. State Department in late 2019, for example, Google, Nokia, Intel, Apple, Global Advanced Metals, USAID, U.S. Department of State, GiZ, the Responsible Business Alliance and RESOLVE visited the Idjwi Island minigrid and spent time with the Panzi Foundation’s Denis Mukwege discussing the intersection of human rights and responsible sourcing in the region. As a result of that trip, the Congo Power team focused on building a deeper relationship with the Panzi Foundation and put community health clinics at the center of addressing power, gender, energy equity along with reinforcing responsible supply chains. The team also continues to expand collaborations with conservation areas such as Garamba National Park, which is deploying clean power systems to support local economic activities (both mining and non-mining) in ways that reduce threats to the park's conservation and biodiversity goals.
Four artisanal gold miners in the Democratic Republic of the Congo at a site visited by the Public-Private Alliance for Responsible Minerals Trade delegation in 2019.

Four artisanal gold miners in the Democratic Republic of the Congo at a site visited by the Public-Private Alliance for Responsible Minerals Trade delegation in 2019. Photo Credit: Alyssa Newman

       
The program’s launch highlighted the importance of deep relationships between development partners, consumer brands and NGOs with deep in-country operating expertise, such as GivePower and Resolve. This multi-sector approach is critical for drawing in further "downstream" conglomerates whose customers increasingly demand end products made with responsibly sourced materials. This strategy has successfully brought on some of the world’s largest manufacturers to the alliance’s commitment to responsible sourcing. Intel has funded two additional phases, and other partners are in the process of making funding commitments. The alliance collaborates with platforms such as Cobalt for Development (BMW, Samsung, BASF, GIZ, Volkswagen, Good Shepherd International Foundation and others) and the Fair Cobalt Alliance(Tesla, Fairfone, The Impact Facility and others) to reinforce mutual objectives in responsible sourcing, and support organizations that are working on the ground. Beyond public and private partners, academia plays an important role within this consortium. Through a collaboration with the Renewable and Appropriate Energy Lab (RAEL) at the University of California, Berkeley, the Congo Power initiative explores how innovative energy solutions can improve livelihoods and resilience across communities in East and Central Africa. Previously funded research has explored the intersection between energy poverty and conflict, the evolution of real-time monitoring of decentralized energy systems, operating models for mini-grids in urban informal settlements, the impact of solar-home-systems on energy, gender and social justice, and frameworks for understanding community participation’s role in mini-grid projects. This is just the beginning, however. Many questions remain for the RAEL/Congo Power collaboration to uncover in improving the delivery of sustainable and appropriate energy solutions across the various supply chains that constitute the lifeblood of vulnerable communities around the world. Chief among the initiative’s research ambitions is developing a deeper sense of how to make $1 of investment in renewable energy "go further." Benchmark impact metrics for innovative energy projects are lacking in the empirical literature, particularly for mini-grid technologies, increasingly recognized as the least-cost way to electrify hundreds of millions of those without power. Developing and documenting enabling partnerships also offers a key resource for nations, businesses, multinational aid / development organizations and civil society to interrogate potential solutions and scale up winning concepts that can help meet goals set in the Paris Climate Agreements and other SDGs. Fundamentally, such a private-public-academic partnership boils down to exploring what kinds of impact — described both quantitatively and qualitatively — different energy delivery models can achieve across institutional and geographical scales. And beyond the evaluation of impact: Which narratives can most effectively communicate these insights into actionable support for promising solutions and their developers? Guided by such academic research questions, these partnerships are able to fund implementation partners as well. Nuru, Equatorial Power and OffGridBox are three such partners in East and Central Africa, whose operations are providing critical insights into key techno-economic and operational challenges to scaling energy access. These organizations have a wide and diverse footprint. Nuru builds and operates mini-grids across remote, rural, and urban areas of the Democratic Republic of the Congo (DRC). Their principal installation is one of the largest mini-grids in Africa, supplying more than 1,800 customers through a 1.3 megawatt solar-hybrid installation in peri-urban neighborhoods in Goma, DRC. Congo Power supported Equatorial Power’s very first installation mini-grid, a 20 kilowatt-peak (kWp) installation on Idjwi Island on Lake Kivu (separating the DRC and Rwanda) supplying over 300 connections, including several small-to-medium enterprises. OffGridBox has deployed one of its 3.4 kWp containerized power and water installations in Walikale (a mining center in eastern DRC), with more than 80 identical such deployments around the world.
OffGridBoxes (“Boxes”) ready for deployment at the Rwandan headquarters.

OffGridBoxes (“Boxes”) ready for deployment at the Rwandan headquarters. Photo by Sam Miles

       
To gain deep yet broad insights into the challenge of strengthening the "golden thread," RAEL researchers within the Congo Power alliance aim to be both methodical yet practical in developing research themes from these initial project foci — particularly important given the challenges of doing in-person research through a pandemic. One theme that consistently emerges through and across such projects is the importance of "productive" uses of electricity — most simply defined as the ability of electricity users to generate additional income on the basis of improved energy access. When, where and how are informal artisans, entrepreneurs and laborers able to convert renewable electricity into improved economic outcomes for themselves, their homesteads and their communities? These questions have proven particularly challenging to answer, despite over two decades of scholarship describing productive uses of electricity as a cornerstone underpinning the financial sustainability, and thus scalability, of energy access solutions with high upfront investment costs and low margins. RAEL researchers have brought novel evaluation approaches to tackle this problem, including live-monitoring of electricity consumption of productive use pilots across the region, geospatial and remote sensing techniques leveraging satellite imagery and machine learning, as well as piloting new power quality and reliability measurement methodologies for evaluating the state of electricity for health services, including cold storage, through collaborations with infrastructure-monitoring startup nLine. Many important questions beyond how to catalyze income generating uses of electricity remain, however. Does street lighting reduce crime in remote villages or rapidly urbanizing environments? Can decentralized energy solutions bridge the gaps in Africa’s vaccine cold chains? How can project funders best collaborate with private sector implementers, NGOs, and policymakers to optimize the impacts of a given energy project, targeting outcomes as disparate as supply chain traceability, productive end uses, conservation or women’s empowerment?
Public street lighting provided by Nuru in a community near Garamba National Park, Democratic Republic of Congo.
Public street lighting provided by Nuru in a community near Garamba National Park, Democratic Republic of Congo. Photo by Esther Nsapu 
These and many other research questions will guide RAEL researchers as the Congo Power initiative continues to gain momentum and partners. A much wider consortium of partners, however, is still needed to confront the magnitude of the challenges ahead, and data-driven research is critical to harness the disparate perspectives, resources and objectives such a big tent approach entails. For corporate sustainability professionals, joining coalitions such as Congo Power is one way to connect many distinct pieces of the challenges that lie ahead: confronting climate change by supporting cleaner energy production in communities at the very start of their supply chains, tackling the human rights implications of exponential demand growth for minerals required for electronics infrastructure including renewable energy equipment and battery storage technologies, and ensuring the equitable distribution of potential benefits from the global energy transition are distributed equitably. No one company or organization can move the needle on their own, but it is increasingly clear that shareholders, consumers, employees and regulators are placing greater responsibility on global brands to step up to the challenge. Partnerships such as Congo Power provide a clear pathway for private-public partnerships to explore and support cutting-edge projects, technologies and infrastructures, guided by the most recent empirical evidence of impact. With rigorous, intersectional and actionable research guiding such a powerful coalition of committed partners, a truly just energy transition is possible. Editor's note: Serena Patel (MIT), Hilary Yu, Joyceline Marealle (both UC Berkeley) and Alyssa Newman (Google and UC Berkeley) also contributed to this article.
Author Biography Links:
 

Now we are cooking with gas: How interdisciplinary solutions and local outreach can light a fire under clean stove adoption

This piece by Annelise Gill-Wiehl and Daniel Kammen is featured in The Beam #11 – Power in People. Subscribe now to read more on the subject.
  “Each time [the local workers] visit, we gain strength from that. To refill [LPG cylinders]. To continue on,” says Bibi Matunda (or Grandma Fruit as the old woman is kindly nicknamed) at a focus group with a few other families in the Community Technology Worker Pilot Program. In Tanzania, where our research is based, 96% of the population [1] relies on “unclean” fuels, and the effects of biomass burning and indoor air pollution contributes to 20,000 deaths [1]. Liquified Petroleum Gas (LPG) is one of the truly clean cooking fuels based on emission criteria set by the World Health Organization (WHO). Although LPG is a fossil fuel, there is a net climate benefit to a large-scale switch to LPG for household fuel due to increased efficiency, as well as the benefit of transitioning away from the methane emissions caused by wood burning. Despite a wave of many African countries setting goals for increased or exclusive LPG use, LPG programs face common barriers to adoption of the clean fuel, which include a lack of education/need for household training, household safety concerns and the prohibitive cost. We looked for analogies in other sustainable development fields that overcame barriers in behavior change and the need for community transitions. Specifically, we turned to the literature on Community Health Workers – local individuals who link their underserved communities to health systems. Despite the existence of established and proven interventions to improve community health, local health systems are too fragmented to scale up these interventions. This weak infrastructure, combined with the shortage of over 4 million health care professionals and the high cost of training doctors, presented a need for a local worker to fill this health care void. A Community Health Worker (CHW) was implemented at the village level to provide individual care that was effective, culturally appropriate, and economical. The WHO defines CHWs as “members of the communities where they work, should be selected by the communities, should be answerable to the communities for their activities, should be supported by the health system, but not necessarily a part of the organization, and have shorter training than professional workers” [2]. The public health community has overwhelmingly demonstrated that CHWs can increase community development and access to health services. We therefore decided to investigate whether a similar model – a Community Technology Worker (CTW) – could be introduced to aid in the adoption of clean stoves. This work was piloted in Shirati, Tanzania, a town of ~50,000 on the edge of Lake Victoria, near the Kenyan border. Kubwana and Michire are two sub-villages in Shirati. Kubwana is a larger, electrified trading area with the regional hospital, small shops, and unofficial vendors selling vegetables, fruit, and charcoal. Michire is closer to the lake and has a smaller trading post without grid electrification – some shops have a single solar panel.  A local NGO, ReachShirati, helped identify trusted community members, Mary from Michire and Nayome from Kubwana, to each start with 15 households. The local LPG company, Mihan Gas, was brought in to provide a day long safety training to supplement the manuals and explanations we provided on the LPG stove. The women then taught the families how to use the gas stove and provided educational and safety pamphlets in the native language that were supplemented with pictorial content for those who cannot read. They promised to always be available for questions or concerns. Mary and Nayome would check-in weekly with the households to conduct a short survey to gauge fuel use, but more importantly, they continue to provide support and encouragement to the families. After a year of surveys and rounds of interviews, the results show that roughly 80% of families report sustained, regular refilling of LPG cylinders. This is a relatively high rate of adoption compared to other LPG and improved biomass cookstove interventions.
© Annelise Gill-Wiehl. The CTW received training on the gas stove, enabling them to empower their community and their own household to confidently use gas safely.
© Annelise Gill-Wiehl. The CTW received training on the gas stove, enabling them to empower their community and their own household to confidently use gas safely.
  A CTW does not remove all barriers to gas adoption. Economic difficulties and cooking materials stand in the way of full adoption. However, these results do suggest that a CTW does mitigate many of the obstacles through education and maintenance support. To further bolster the effectiveness of the CTW model and encourage families to refill their LPG cylinder, we are continuing to conceptualize with other disciplines, specifically economics and microfinance. The research is attempting to expand and offer households an opportunity to opt into a savings bank option to promote accountability and a formal financial mechanism.  
© IDEO & Clean Cooking Alliance. The available cookstoves in Tanzania range from wood to charcoal, kerosene, LPG, and electric. The upfront costs increase from free to 50 USD as you climb this “energy ladder.” The variability in income creates challenges for rural households to afford the lump sum of a gas cylinder, which often prevents their adoption of this option.
© IDEO & Clean Cooking Alliance. The available cookstoves in Tanzania range from wood to charcoal, kerosene, LPG, and electric. The upfront costs increase from free to 50 USD as you climb this “energy ladder.” The variability in income creates challenges for rural households to afford the lump sum of a gas cylinder, which often prevents their adoption of this option.
  Our work is not the only clean cooking initiative to reach across disciplines and innovate to reach the world’s poor. There are many prominent ventures on the horizon in clean cooking, such as pay-as-you-cook SmartGas from Envirofit and Inyeryeri’s firewood pellet stove – one of the few biomass stoves to meet the Tier 4 Emission Criteria set by the WHO. These enterprises are combining disciplines with IT & computer science, mechanical engineering, and economics. This cross-disciplinary work is crucial to attack the most pressing environmental and global health issues. As we face a warming climate and growing health implications from the burning of biomass, it is all the more important for the sustainable development community to work together and lean on new ideas and identify proven bright spots, even those from different disciplines. We cannot look for solutions in silos; rather, we must reach out across disciplines and topics to achieve a sustainable future. We must not forget to incorporate the most important aspect from both CHWs and CTWs – the human contact of local outreach. In theory, reach and scale are easily and quickly attainable even without physical visiting. However, even companies like Envirofit, who pursue large-scale cookstove deployment mostly through IT-based communication, admit that “while investing in training resources increases costs, it also increases adoption”[3]. The advantage of this model for cooking over an IT-based solution (i.e. text message education or reminders) is the flexibility and resilience inherent to a human-led initiative. Human workers can respond and adapt to the specific issues of the household and provide helpful advice; an automated text message is easily ignored and cannot adapt to specific circumstances. Households are more likely to adopt improved stoves if they have had prior exposure to a trusted individual or organization promoting the product. Additionally, these local trainers could be utilized to solve other community problems, such as water and sanitation technology or mini-grids. An interdisciplinary solution can be employed to solve a multitude of disciplinary problems. The focus group reiterated the importance of community between the CTW and the households. For example, one woman said, “we have become friends, we greet each other, you find out what the problem is and you help. If there is a problem, we find a solution.” As the women of Shirati support each other within this program, so should the fields in sustainable development. Beyond an expanded study that couples this model with a savings bank as mentioned above, this work could become a strong private-public partnership. Mirroring the CHWs in Tanzania, LPG companies could coordinate their village LPG dealers with local governments to adopt this model, empower their communities from within, and work towards clean fuel adoption for decades to come. Community-based outreach and interdisciplinary solutions are invaluable in the effort to provide access and ensure adoption of clean energy for cooking and beyond. Sources [1]    Clean Cooking Alliance, “Tanzania,” 2019. [Online]. Available: https://www.cleancookingalliance.org/country-profiles/41-tanzania.html. [Accessed: 30-Oct-2019]. [2]    G. Health, “Community and Formal Health System Support for Enhanced Community Health Worker Performance A U.S. Government Evidence Summit FINAL REPORT Content,” 2012. [3]    Envirofit, “COOKING IN ONE MILLION KITCHENS: Lessons Learned in Scaling a Clean Cookstove Business,” 2015.

No need to dam free flowing rivers to meet worlds climate and energy targets

Originally published in Mongabay:

  • In a comment article published in the Nature last month, scientists argue that an “energy future in which both people and rivers thrive” is possible with better planning.
  • The hydropower development projects now underway threaten the world’s last free-flowing rivers, posing severe threats to local human communities and the species that call rivers home. A recent study found that just one-third of the world’s 242 largest rivers remain free-flowing.
  • The benefits of better planning to meet increasing energy demands could be huge: A report released by WWF and The Nature Conservancy ahead of the World Hydropower Congress, held in Paris last month, finds that accelerating the deployment of non-hydropower renewable energy could prevent the fragmentation of nearly 165,000 kilometers (more than 102,500 miles) of river channels.
In a comment article published in the Nature last month, scientists argue that an “energy future in which both people and rivers thrive” is possible with better planning. For decades, hydropower dams have been a go-to solution for electrifying the developing world. There are more than 60,000 large dams around the globe, and as the demand for clean energy in Africa, South America, and Southeast Asia continues to grow, hundreds more are currently in the planning stages. Hydroelectric dams have their advantages, such as providing a steady supply of baseload electricity that can be adjusted quickly to meet fluctuating demand and zero hazardous wastes or byproducts to dispose of. But according to the authors of the Nature article, by Rafael J. P. Schmitt at Stanford University, Noah Kittner, Matthias Kondolf, and Daniel M Kammen of the University of California, at Berkeley “Hydropower needs to be viewed as part of a broader strategy for clean energy, in which the costs and benefits of different sources should be assessed and weighed against each other.” The hydropower development projects now underway threaten the world’s last free-flowing rivers, posing severe threats to local human communities and the species that call rivers home. The Cambodian government, for instance, is proposing to build the 11,000-gigawatt-hour Sambor dam on the Mekong River, which “would prevent fish from migrating, threatening fisheries worth billions of dollars. It would further cut the supply of sediment to the Mekong Delta, where some of the region’s most fertile farmland is at risk of sinking below sea level by the end of the century,” according to Schmitt and colleagues. “And the dam would do little to bring electricity or jobs to local villagers: much of its hydropower would be exported to big cities in neighbouring nations, far from the rivers that will be affected.” A recent study found that just one-third of the world’s 242 largest rivers remain free-flowing, mostly in remote regions of the Amazon Basin, the Arctic, and the Congo Basin. As Schmitt and co-authors note in the Nature article, however, hydropower is just one of many clean energy options available today, and technologies like solar panels or wind turbines can produce similar amounts of electricity as large hydroelectric dams at roughly the same cost. “[S]preading a variety of renewable energy sources strategically across river basins could produce power reliably and cheaply while protecting these crucial rivers and their local communities,” the researchers write. “Solar, wind, microhydro and energy-storage technologies have caught up with large hydropower in price and effectiveness. Hundreds of small generators woven into a ‘smart grid’ (which automatically responds to changes in supply and demand) can outcompete a big dam.” Schmitt and team say that, in order to keep the world’s remaining free-flowing rivers unobstructed while increasing access to electricity in developing nations at the same time, strategies for deploying renewable energy technologies and expanding hydropower projects must be made at the basin-wide or regional level and strike the right balance between impacts and benefits of all available clean electricity generation methods. “On the major tributaries of the lower Mekong, for example, dams have been built ad hoc. Existing ones exploit only 50% of the tributaries’ potential hydropower yet prevent 90% of their sand load from reaching the delta,” the researchers report. “There was a better alternative: placing more small dams higher up the rivers could have released 70% of the power while trapping only 20% of the sand.” Site selection for solar and wind farms must be just as strategic as for new dams. “Impacts of these projects on the landscape need to be considered, too. Solar and wind farms might be built on patches of land that have low conservation value, such as along roads, or even floating on hydropower reservoirs,” Schmitt and co-authors suggest. “Solar panels and small wind turbines can be put on or near buildings to minimize infrastructure and reduce energy losses in transmission.” The scientists recommend that organizations and governments who manage river basins apply a “holistic perspective” to energy planning that takes into account all non-hydropower renewable energy options, energy efficiency measures, energy demand management, and the risks posed by global climate change — as decreasing river flows in a more drought-prone, warmer world could severely impact the output of hydroelectric dams. But in order to properly evaluate all of the trade-offs when designing a renewable energy strategy, we need to know much more about river ecosystems and the human communities that depend on them: “Researchers need to fill data gaps across whole river basins, from fish migration and sediment transport to community empowerment and impacts on food systems,” Schmitt and co-authors write. “The costs of lost ecosystem services over the life cycle of energy projects must be included in cost–benefit analyses. Such research is cheap compared with the costs of building dams and mitigating environmental impacts.” The benefits of better planning to meet increasing energy demands could be huge: A report released by WWF and The Nature Conservancy ahead of the World Hydropower Congress, held in Paris last month, finds that accelerating the deployment of non-hydropower renewable energy could prevent the fragmentation of nearly 165,000 kilometers (more than 102,500 miles) of river channels. “We can not only envision a future where electricity systems are accessible, affordable and powering economies with a mix of renewable energy, we can now build that future,” Jeff Opperman, a freshwater scientist with WWF and lead author of the report, said in a statement. “If we do not rapidly seize the opportunity to accelerate the renewable revolution, unnecessary, high-impact hydropower dams could still be built on iconic rivers such as the Mekong, Irrawaddy, and Amazon — and dozens or hundreds of others around the world. It would be a great tragedy if the full social and environmental benefits of the renewable revolution arrived just a few years too late to safeguard the world’s great rivers and all the diverse benefits they provide to people and nature.”
Pamok, Laos. Life along the banks of the Mekong River. © Nicolas Axelrod / Ruom for WWF.
CITATIONS • Grill et al. (2019). Mapping the world’s free-flowing rivers. Nature. doi:10.1038/s41586-019-1111-9 • Opperman, J., J. Hartmann, M. Lambrides, J.P. Carvallo, E. Chapin, S. Baruch-Mordo, B. Eyler, M. Goichot, J. Harou, J. Hepp, D. Kammen, J. Kiesecker, A. Newsock, R. Schmitt, M. Thieme, A. Wang, and C. Weber. (2019). Connected and flowing: a renewable future for rivers, climate and people. WWF and The Nature Conservancy, Washington, DC. • Schmitt, R. J., Kittner, N., Kondolf, G. M., & Kammen, D. M. (2019). Deploy diverse renewables to save tropical rivers. Nature 569, 330-332. doi:10.1038/d41586-019-01498-8

SMART VILLAGES: New thinking for off-grid communities worldwide

      OLYMPUS DIGITAL CAMERA Keywords: off-grid energy; village power; decentralized energy, energy services, energy innovation.  Overview: Two critically important and interlinked challenges face the global community in the 21st century: the persistence of widespread energy poverty and the resulting lost economic opportunity; and intensifying human-driven climate disruption. These crises are inexorably linked through the energy technology systems that have so far provided the vast majority of our energy: biomass and fossil fuels. Both the energy service crisis and the climate crisis have become increasingly serious over the past decades, even though we have seen greater clarity over the individual and social costs that each has brought to humanity.   The Sustainable Energy Imperative: The correlation between access to electricity and a wide range of social goods is overwhelming. However, access to improved energy services alone does not provide a surefire pathway to economic opportunity and an improved quality of life. In Figure 2 we show the correlations that exist between electricity access across nations and a variety of measures of quality of life, such as the Human Development Index (a measure of well-being based in equal thirds on gross national income, life expectancy, and educational attainment). Other indicators studied include gender equality in educational opportunity, and the percentage of students who reach educational milestones. All of these indices improve significantly and roughly linearly with access to electricity. At the same time, the percentage of people below the poverty line, and childhood mortality, both decline with increasing energy access1.       Figure 1: A village micro-grid energy and telecommunications system in the Crocker Highlands of Sabah, Malaysian Borneo. The system serves a community of two hundred, and provides household energy services, telecoms and satellite (dish shown), water pumping for fish ponds (seen at center) and for refrigeration. The supply includes micro-hydro and solar generation (one small panel shown here, others are distributed on building rooftops). Photo credit: Daniel M. Kammen.  Figure 2: The Human Development Index (HDI) and various additional metrics of quality of life plotted against the percentage of the population with electricity access. Each data point is country level data a specific point in time. For additional data, see Alston, Gershenson, and Kammen, 20151.   Today the gap between global population and those with electricity access stands at roughly 1.3 billion, with energy services for the unelectrified coming largely from kerosene and traditional biomass, including dung and agricultural residues. This ‘access gap’ has persisted as grid expansion programmes and population have grown.   Grid expansion has roughly kept pace with the increase in the global population. About 1.4 billion people in 2013 are completely off-grid, and many ostensibly connected people in the developing world experience significant outages that range from 20-200+ days a year.   The majority of these off-grid residents are in rural and underserved peri-urban areas. Current forecasts are that this number will remain roughly unchanged until 2030, which would relegate a significant portion of the population and the economies of many of the neediest countries on earth to fragile, underproductive lives with less options than they could otherwise have. Traditional grid extension will be slowest to reach these communities. Unless the advances in both energy and information systems that have occurred over the past decade are more widely adopted, there will be little if any chance to alter this trend.   Advances in off-grid systems Recently we have seen an emergence of off-grid electricity systems that do not require the same supporting networks as the traditional forms of centralized power generation. These technological innovations are as much based on information systems as they are directly about energy technology. While traditional electricity grids can gradually pay off (amortize) the costs of expensive generation, transmission and distribution capital equipment across many customers and across many decades, a new business model is needed to rapidly bring energy services to the rural and urban poor. Mini-grids and products for individual user end-use such as solar home systems have benefitted from dramatic price reductions and performance advances in solid state electronics, cellular communications technologies, electronic banking, and in the dramatic decrease in solar energy costs2. This mix of technological and market innovation has contributed to a vibrant new energy services sector that in many nations has outpaced traditional grid expansion.   The comparison between the utility model of central-station energy systems and this new wave of distributed energy providers is instructive. Traditional dynamo generators and arc lighting perform best at large scale, and they became the mainstay of large-scale electric utilities. The classic utility model of a one-way flow of energy from power plant to consumers is now rapidly changing.   The combination of low-cost solar, micro-hydro, and other generation technologies coupled with the electronics needed to manage small-scale power and to communicate to control devices and to remote billing systems has changed village energy. High-performance, low-cost photovoltaic generation, paired with advanced batteries and controllers, provide scalable systems across much larger power ranges than central generation, from megawatts down to fractions of a watt3.   The rapid and continuing improvements in end-use efficiency for solid state lighting, direct current televisions, refrigeration, fans, and information and communication technology (ICT, as seen in Figure 1) have resulted in a 'super-efficiency trend'. This progress has enabled decentralized power and appliance systems to compete with conventional equipment for basic household needs. These rapid technological advances in supporting clean energy both on- and off-grid are furthermore predicted to continue. This process has been particularly important at the individual device and household (solar home system) level, and for the emerging world of village mini-grids3.   Diverse Technology Options to Provide Energy Services for the Unelectrified: With these technological cornerstones, aid organizations, governments, academia, and the private sector are developing and supporting a wide range of approaches to serve the needs of the poor, including pico-lighting devices (often very small 1 – 2 watt solar panels charging lithium-ion batteries which in turn power low-cost/high efficiency light emitting diode lights), solar home systems (SHS), and community-scale micro- and mini-grids. Decentralized systems are clearly not complete substitutes for a reliable grid connection, but they represent an important level of access until a reliable grid is available and feasible. They provide an important platform from which to develop more distributed energy services. By overcoming access barriers often through market-based structures, these systems provide entirely new ways to bring energy services to the poor and formerly un-connected people.   Meeting peoples’ basic lighting and communication needs is an important first step on the 'modern electricity service ladder' 4. Eliminating kerosene lighting from a household improves household health and safety while providing significantly higher quality and quantities of light. Fuel based lighting is a $20 billion industry in Africa alone, and tremendous opportunities exist to both reduce energy costs for the poor, and to improve the quality of service. Charging a rural or village cell phone can cost $5 – 10/kWh at a pay-for-service charging station, but less than $0.50 cents/kWh via an off-grid product or on a mini-grid.   This investment frees income and also tends to lead to higher rates of utilization for mobile phones and other small devices. Overall, the first few watts of power mediated through efficient end-uses lead to benefits in household health, education, and poverty reduction. Beyond basic needs there can be a wide range of important and highly-valued services from decentralized power (e.g., television, refrigeration, fans, heating, ventilation and air-conditioning, motor-driven applications) depending on the power level and its quality along with demand-side efficiency.   Experience with the 'off-grid' poor confirms the exceptional value derived from the first increment of energy service—equivalent to 0.2-1 Wh/day for mobile phone charging or the first 100 lumen-hours of light. Given the cost and service level that fuel-based lighting and fee-based mobile phone charging provide as a baseline, simply shifting this expenditure to a range of modern energy technology solutions could provide a much better service, or significant cost savings over the lifetime of a lighting product (typically 3-5 years).   Mirroring the early development of electric utilities, improvements in underlying technology systems for decentralized power are also being combined with new business models, institutional and regulatory support, and integrated information technology systems5, 6. Historically, the non-technical barriers to adoption have been impediments to widespread adoption of off-grid electricity, and in some cases they still are. A lack of appropriate investment capital also hampers the establishment and expansion of private sector initiatives. Furthermore, complex and often perverse policy environments impair entry for clean technologies and entrench incumbent systems. Subsidies for liquid lighting fuels can reduce the incentive to adopt electric lighting. In addition, the prevalence of imperfect or inaccurate information about quality can lead to market spoiling4 and is also manifested by a lack of consumer understanding and awareness of alternatives to incumbent lighting technology.   Testing laboratories that rate the quality of the lighting products and disseminate the results are an invaluable step in increasing the quality and competitiveness of new entrants into the off-grid and mini-grid energy services space. The Lighting Global (https://www.lightingglobal.org) programme5 is one example of an effort that began as an industry watchdog, but has now become an important platform that provides market insights, steers quality assurance frameworks for modern, off-grid lighting devices and systems, and promotes sustainability through a partnership with industry.   An Action Agenda for Energy Access: The diversity of new energy service products available, and the rapidly increasing demand for information and communication services, water, health and entertainment in villages worldwide has built a very large demand for reliable and low-cost energy7. Combining this demand with the drive for clean energy brings two important objectives that were for many years seen as in direct competition with alignment around the suite of new clean energy products that can power village energy services.   To enable and expand this process, a range of design principles emerge that can form a roadmap to clean energy economies:    

  • Establish clear goals at the local level: Universal energy access is the global goal by 20307, but establishing more near-term goals that embody meaningful steps from the present situation will show how what is possible and at what level of effort. Cities and villages have begun with audits of energy services, costs, and environmental impacts. A number of tools are often cited as excellent starting points, including the climate footprint assessment tools like http://coolclimate.berkeley.edu, and the HOMER software package (http://www.homerenergy.com) used by many groups to design both local mini-grids and to plan and cost out off-grid energy options
 
  • Empower villages as both designers and as consumers of localized power: Village solutions necessarily vary greatly, but clean energy resource assessments, evaluation of the needed infrastructure investment, and, most often neglected but most important, the social structures around which sufficient training exists to make the village energy system a success.   In a pilot in rural Nicaragua, once the assessment was complete8 movement from evaluation to implementation quickly became a goal of both the community and a local commercial plant.
 
  • Make equity a central design consideration: Community energy solutions have the potential to liberate women entrepreneurs and disadvantaged ethnic minorities by tailoring user-materials and energy plans to meet the cultural and linguistic needs of these communities. National programmes often ignore business specialties, culturally appropriate cooking and other home energy needs. Thinking explicitly about this is both good business and makes the solutions much more likely to be adopted.
  References & Further Reading:
  1.  Alstone, Peter, Gershenson, Dimitry and Daniel K. Kammen (2015) Decentralized energy systems for clean electricity access, , , 305 – 314.
  2. Alstone, Peter, Gershenson, Dimitry and Daniel K. Kammen (2015) Decentralized energy systems for clean electricity access, Nature Climate Change, 5, 305 – 314.
  3. Zheng, Cheng and Kammen, Daniel (2014) An Innovation-Focused Roadmap for a Sustainable Global Photovoltaic Industry, Energy Policy, 67, 159–169.
  4. Daniel Schnitzer, Deepa Shinde Lounsbury, Juan Pablo Carvallo, Ranjit Deshmukh, Jay Apt, and Daniel M. Kammen (2014) Microgrids for Rural Electrification: A critical review of best practices based on seven case studies (United National Foundation: New York, NY). http://energyaccess.org/images/content/files/MicrogridsReportFINAL_high.pdf
  1. Casillas, C. and Kammen, D. M. (2010) The energy-poverty-climate nexus, Science, 330, 1182
  2. Azevedo, I. L., Morgan, M. G. & Morgan, F. (2009) The transition to solid-state lighting. Proceedings of the IEEE 97, 481-510 (2009).
  3. Mileva, A., Nelson, J. H., Johnston, J., and Kammen, D. M. (2013) SunShot Solar Power Reduces Costs and Uncertainty in Future Low-Carbon Electricity Systems, Environmental Science & Technology, 47 (16), 9053 – 9060.
  4. Sovacool, B. K. The political economy of energy poverty: A review of key challenges. Energy for Sustainable Development 16, 272-282 (2012).
  5. SE4ALL. (2013) Global Tracking Framework (United Nations Sustainable Energy For All, New York, NY).
 

Welcome to the Decentralized Energy Revolution: Cleanly Electrifying the World

electricity   CALIFORNIA MAGAZINE, APRIL 7, 2015 http://alumni.berkeley.edu/california-magazine/just-in/2015-04-07/welcome-decentralized-energy-revolution-cleanly-electrifying

   By Glen Martin
While the boons of electricity are obvious to anyone who has watched a 49ers game on a 70-inch ultra HDTV or whipped up a frozen margarita in a blender, it also has its downsides—most of them environmental. Coal and natural gas power plants belch planet-warming CO2 into the atmosphere, while nuclear plants produce highly lethal radwaste. Still, access to electrical power is a basic social-equity issue. About 1.5 billion of the planet’s 7 billion people lack electricity, and their lives are impoverished, physically and culturally, as a result. Further, a deficiency of electricity generates environmental problems of its own. If people lack electricity to cook their food or warm their homes, they’ll substitute wood or charcoal, resulting in deforestation and yes, more carbon spewing into the atmosphere. But a paper by UC Berkeley researchers Peter Alstone, Dimitry Gershenson and Daniel Kammen indicates that a major change in the way power is produced and consumed is in the offing—one that could electrify the developing world (literally and figuratively) while promising reduced carbon emissions. The study, published in the journal Nature Climate Change, identifies the present moment as a tipping point, one in which decentralized transmission networks, cheap photovoltaics, sophisticated low-energy appliances, mobile phones and “virtual” financial services are all merging to create a kind of alt-grid that will, as one addicted to clichés might say, shift the energy paradigm. Here’s what’s happening: Solar panels and batteries have gotten both better and cheaper, to the point that the developing world’s mini-grids (for communities) and micro-grids (villages or individual homes) can afford them. Such systems are easier and cheaper to set up than legacy systems dependent on big, centralized power plants and tower-supported transmission lines festooned around the countryside. Ultra-efficient appliances—everything from TVs to refrigerators—also are now widely available, as is LED lighting (which uses minimal power). “What’s making this new system possible is the merging of information and energy technologies, of aggressive innovation in both the power production and smart phone worlds,” says Kammen, a professor at the Goldman School of Public Policy and the director of UC’s Renewable and Appropriate Energy Laboratory.

Kenya was once an en­ergy black hole. Today Mas­aai mor­an (war­ri­ors) herd their live­stock while sim­ul­tan­eously check­ing cattle prices in Mom­basa on their cell phones, which they hol­ster in beaded pouches worn around their necks.

The abrupt and massive spread of cell phone technology has encouraged virtual banking systems that allow small-scale energy producers and their customers to do business from anywhere, and on a pro-rata basis. Customers are able to buy power in exceedingly small increments—say, enough to recharge their cell phones and power an LED light or two, or a tiny refrigerator and a high-efficiency hot plate. That’s a big deal in the developing world, where even a few such amenities make a gigantic difference in the quality of life—and where cash always is in short supply. It allows customers in rural Africa and Asia to analogously do with energy what they do when they visit a village store: buy a single stick of gum or a matchbook. Indeed, Kammen says, trusted e-banking systems are essential for the support of the mini-grid network, and he notes that the developing world has led in creating apps for such services. He cites Kenya as an especially shining example. Fifteen years ago, the country was a communications black hole. Hard-line telephony was the rule, and spotty at best. Outside Nairobi and Mombasa, people made do with CB radios or word of mouth. Then mobile technology arrived, and within a few years everyone was connected. Today, when visiting the country’s wildlife reserves, you’ll see Masaai moran (warriors) herding their livestock while simultaneously checking cattle prices in Mombasa on their cell phones, which they holster in beaded pouches worn around their necks. “In the 1990s I helped start up Mpala Research Center in Laikipia [in northern Kenya],” recalls Kammen. “We had to wait for a satellite to pass overhead so we could make our 35-second phone calls. Now researchers are receiving streaming data on individual lions and African wild dogs that they’re tracking.” In 2007, a proprietary mobile system known as M-Pesa was launched in Kenya. Originally promoted as an easy way to post payments for microloans, it was soon used by working urbanites as a means of sending money to relatives back on the rural shamba. M-Pesa is now Kenya’s preeminent banking system. As of late 2013, 19 million of the country’s 44 million people were signed up, with 25 percent of the national economy flowing through M-Pesa’s virtual conduits. In terms of energy development, that means small-scale power providers can receive payment for specific services from customers seamlessly, bypassing everything from poor infrastructure (people don’t have to walk miles over cattle trails to pay their bills) to government and corporate corruption. “And we’re seeing other IT applications all around the developing world,” Kammen says. “In Bangladesh, for example, phones are being used to test battery [arrays]. Keeping battery systems fully functional is critical for mini-grids, and it’s a big problem in Bangladesh, where a third of the country floods each year. Mini-grids don’t have maintenance teams regularly checking the systems, but you can upload data on cell phones when there’s a specific problem, and the provider can deal with it.”

“We’re mov­ing from an era that has re­mained un­der-in­nov­ated for dec­ades—the sys­tem where you pay a big util­ity for your en­ergy—to de­cent­ral­ized sys­tems…. It’s es­sen­tially the demo­crat­iz­a­tion of en­ergy.”

Decentralized electrification also reduces the causes of deforestation. When people have electricity, the rate of charcoal and wood burning typically decreases dramatically, Kammen observes. And decentralized energy isn’t just an accelerating trend in the developing world. In America, solar panels are sprouting on suburban homes like chanterelle mushrooms in Mendocino after a winter rain; cell phones are ubiquitous. The United States, in short, is experiencing its own decentralized energy revolution. “I have solar panels on my roof, and I can use my phone to track how much power each one is producing,” Kammen says. “I can determine which ones are dirty and may need a cleaning to improve performance. I can see how green my energy consumption is at any moment.” That points to a shift in power (political, not electrical) from the energy producer to the consumer. In fact, Kammen contends that the “Big Grid” of the existing utilities must adapt, melding with the growing mini- and micro-grids, to thrive. “We’re moving from an era that has remained under-innovated for decades—the system where you pay a big utility for your energy—to decentralized systems that have a lot of networked components and consumer input, all driven by powerful IT,” Kammen says. “It’s essentially the democratization of energy.” But to really accelerate the trend, Kammen says, a big dog must emerge from the pack of alt-energy advocates. “We’re working with a number of start-ups that are wrestling with the best way to put this all together,” Kammen says. “Nobody has hit on the right approach yet, but I anticipate somebody will do a Facebook kind of breakout sooner or later, come up with an off-grid version of Tesla. Our paper has been getting a lot of response in the week since its publication, in part because it demonstrates just how negative the impacts of poor energy access are. We show how it stymies educational opportunities and exacerbates gender inequality. It accelerates deforestation and can increase carbon emissions. But we also identify a goal: providing electricity to the 1.5 billion people who don’t have it by 2030. And with the systems we discuss, we think that’s achievable.”
 

Can small nuclear reactors help Canada reach its net-zero 2050 goals? Some experts are skeptical

November 9, 2020: Canada has expressed interest in a new, smaller type of nuclear reactor that proponents say will be critical to help the country reach its target of net-zero carbon emissions by 2050. But there is debate among researchers, advocates and other experts on whether these new reactors are necessary to reach net-zero — or whether it's better accomplished by focusing efforts elsewhere.

Daniel Kammen, a professor of energy at the University of California, Berkeley, cautions that any stance on the role small modular reactors will play in Canada's energy future depends on research and data that could still be years away. "We have a data set, currently, of zero," he told What on Earth. Screen Shot 2020-11-09 at 12.14.52 PM "You can forecast what they might be based on technical assessments ... but it's based on no real data. It's based just on what we hope will come out of different plans."
Daniel Kammen is a professor of energy at the University of California, Berkeley. (Elena Zhukova/Submitted by Daniel Kammen)
Small modular reactors, or SMRs for short, are smaller than a conventional nuclear power plant and can be manufactured in a factory before being transported and assembled elsewhere — something proponents say will lower costs. The International Atomic Energy Agency (IAEA), the UN organization for nuclear cooperation, considers an SMR to be "small" if it generates under 300 megawatts of electricity, compared to traditional nuclear reactors that typically generate about 800 megawatts, or about enough to power about 600,000 homes at once (assuming that 1 megawatt can power about 750 homes). The federal government called it the "next wave of innovation" in nuclear energy technology and an "important technology opportunity for Canada." In October, the federal government announced it was investing $20 million into Terrestrial Energy to help the Oakville, Ont., company develop its design of a small modular reactor. Last December, Ontario Premier Doug Ford, New Brunswick Premier Blaine Higgs and Saskatchewan Premier Scott Moe released a joint statement committing to developing SMRs in Canada. Alberta joined that agreement in August. While the Canadian Nuclear Safety Commission is currently conducting pre-licensing reviews on several designs, forecasts suggest it could be years, perhaps 2030, before SMRs would be operating in Canada.
(CBC News)
According to the Canadian Nuclear Association's SMR roadmap, the small reactors would help replace energy capacity lost by closing coal plants, help power off-grid projects like mines and oilsands sites, and replace diesel fuel in remote communities. "We have not seen a model where we can get to net-zero emissions by 2050 without nuclear," Natural Resources Minister Seamus O'Regan told The House in September. "This is a zero-emission energy source." Nuclear energy is actually considered a low-emission — not zero-emission — energy source by the International Energy Agency (IEA), Intergovernmental Panel on Climate Change (IPCC) and others. While the nuclear fission that takes place inside a reactor doesn't emit carbon, greenhouse gas emissions result from the surrounding processes and operations: mining the uranium, building the reactor and its eventual decommission.
Benjamin Sovacool is the director of the energy group at the University of Sussex, and a lead author for the IPCC on how to mitigate climate change between now and 2050. (University of Sussex/Submitted by Benjamin Sovacool)
"When you look at the entire fuel cycle and you broaden the lens across it, you start to capture a whole host of emissions that are often excluded," said Benjamin Sovacool, director of the energy group at the University of Sussex, and a lead author for the IPCC on how to mitigate climate change between now and 2050. Sovacool said that renewables like solar and wind provide a bigger bang for the buck to lower emissions, and are widely available now, unlike SMRs. "Nuclear power is like fighting world hunger with caviar, it's like using the most expensive option when there are far more plentiful and nutritious options available when you account for the costs," he told What on Earth. John Gorman, however, is convinced nuclear power is the way forward — and that SMRs are a crucial part of the plan. He's the president and CEO of the Canadian Nuclear Association — but before that, he was head of the Canadian Solar Industries Association. "When I moved over from the renewable side, I had to do a lot of homework to really look into the technology, its track record, the way that it deals with some of the issues that are of most concern to people," he told Lynch. "I've come to the realization after all of that that really there is no way to net zero without nuclear. And secondly, it just is a really safe, remarkable technology." Gorman pointed to decades of North American experience working with nuclear energy, and affirmed the importance of going through the regulatory process throughout development to ensure SMRs are as safe and efficient as possible. He said the seven-to-10-year estimates for SMRs to become a reality in Canada are "a blink of an eye in terms of energy planning," and that they will become "a real, necessary tool" for Canada's net-zero targets. Kammen isn't convinced that SMRs have quite yet earned a green light. "You ... have to worry about the end of life and the risk issues that are not a feature of wind or solar," he said., "A bad batch of solar panels is actually a learning event, whereas a bad batch of components for a nuclear plant can be catastrophic." Kerry Blaise, staff lawyer at the Canadian Environmental Law Association, said SMRs and nuclear energy present "a dangerous distraction from real climate action." Her stance is echoed by more than 25 environment and citizens' groups, including Greenpeace, the Sierra Club and Equiterre, which released a statement in October. Blaise said the modular nature of SMRs means that fuel for the reactors — and, eventually, the radioactive waste they produce — will have to be transported more frequently, especially if they are deployed in remote locations like mines and Indigenous communities. She added that "the economics don't add up" regarding arguments that nuclear energy should be "part of the mix" along with renewable energy. "The cost of renewables continues to go down due to incremental manufacturing and installation improvements, while nuclear, despite having had half a century of industrial experience, continues to have costs that are rising," she said. Nuclear power has been declining worldwide for decades, and cost has been one challenge, according to a 2019 report from the IEA, which said "new projects have been plagued by cost overruns and delays." Kammen said he's seen a large amount of private sector investment in SMRs, which could help accelerate development to make it competitive alongside renewables like solar and wind. But it will be some time, he said, before anyone can guess what "mix of technologies" will be best. "These new nuclear plants need to perform at a cost level that we have not seen. They need to perform at a reliability level we haven't seen.... And then finally, the most critically, these plants have to be demonstrated to be operated safely during their lifetime and for the fuel management at the end of life cycle," he said. "That's a big list of ifs. So I'm rooting for nuclear, but I think that list of challenges is exceedingly long." _________ For the original CBC source: click here. Link: https://www.cbc.ca/radio/whatonearth/can-small-nuclear-reactors-help-canada-reach-its-net-zero-2050-goals-some-experts-are-skeptical-1.5792823

Good Grids Make Good Neighbors: Peace and Sustainability in the Post Paris World

Good Grids Make Good Neighbors: Peace and Sustainability in the Post Paris World Location: William J. Perry Conference Room, Encina Hall, 2nd Floor, Stanford University, 616 Serra St, Stanford, CA 94305 3:30 - 5:00 PM, Monday, February 26, 2018   Abstract: Clean energy provides a number of benefits at scales from household to village to city and region. An unrealized and under-appreciated opportunity is to transition conflict regions from external fuel supply chains to local, clean and unpolluting energy. The benefits of this transition include local energy security to shared benefits from sustaining local generation capacity, which we term 'peace through grids'. Speaker bio: Daniel M. Kammen is a Professor of Energy at the University of California, Berkeley, with parallel appointments in the Energy and Resources Group where he serves as Chair, the Goldman School of Public Policy where he directs the Center for Environmental Policy, and the department of Nuclear Engineering. Kammen is the founding director of the Renewable and Appropriate Energy Laboratory (RAEL; http://rael.berkeley.edu), and was Director of the Transportation Sustainability Research Center from 2007 - 2015. He was appointed by then Secretary of State Hilary Clinton in April 2010 as the first energy fellow of the Environment and Climate Partnership for the Americas (ECPA) initiative. He began service as the Science Envoy for U. S. Secretary of State John Kerry in 2016, but resigned over President Trump’s policies in August 2017. He has served the State of California and US federal government in expert and advisory capacities, including time at the US Environmental Protection Agency, US Department of Energy, the Agency for International Development (USAID) and the Office of Science and Technology Policy Dr. Kammen was educated in physics at Cornell (BA 1984) and Harvard (MA 1986; PhD 1988), and held postdoctoral positions at the California Institute of Technology and Harvard. He was an Assistant Professor and Chair of the Science, Technology and Environmental Policy Program at the Woodrow Wilson School at Princeton University before moving to the University of California, Berkeley. Dr. Kammen has served as a contributing or coordinating lead author on various reports of the Intergovernmental Panel on Climate Change since 1999. The IPCC shared the 2007 Nobel Peace Prize. Kammen helped found over 10 companies, including Enphase that went public in 2012, Renewable Funding (Renew Financial) a Property Assessed Clean Energy (PACE) implementing company that went public in 2014. Kammen played a central role in developing the successful bid for the $500 million energy biosciences institute funded by BP. During 2010-2011 Kammen served as the World Bank Group’s first Chief Technical Specialist for Renewable Energy and Energy Efficiency. While there, Kammen worked on the Kenya-Ethiopia “green corridor” transmission project, Morocco’s green transformation, the 10-year energy strategy for the World Bank, and on investing in household energy and gender equity. He was appointed to this newly created position in October 2010, in which he provided strategic leadership on policy, technical, and operational fronts. The aim is to enhance the operational impact of the Bank’s renewable energy and energy efficiency activities while expanding the institution’s role as an enabler of global dialogue on moving energy development to a cleaner and more sustainable pathway. Kammen’s work at the World Bank included funding electrified personal and municipal vehicles in China, and the $1.24 billion transmission project linking renewable energy assets in Kenya and Ethiopia. He has authored or co-authored 12 books, written more than 300 peer-reviewed journal publications, and has testified more than 40 times to U.S. state and federal congressional briefings, and has provided various governments with more than 50 technical reports. For details see http://rael.berkeley.edu/publications. Dr. Kammen also served for many years on the Technical Review Board of the Global Environment Facility. He is the Specialty Chief Editor for Understanding Earth and Its Resources for Frontiers for Young Minds. Kammen is a frequent contributor to or commentator in international news media, including Newsweek, Time, The New York Times, The Guardian, and The Financial Times. Kammen has appeared on ‘60 Minutes’ (twice), NOVA, Frontline, and hosted the six-part Discovery Channel series Ecopolis. Dr. Kammen is a Permanent Fellow of the African Academy of Sciences, a fellow of the American Academy for the Advancement of Science, and the American Physical Society. In the US, he has served on several National Academy of Sciences boards and panels.

October 18, 2017 — Next10

Please join us for a presentation by several RAEL projects to Next10, and a dialog around efforts on sustainable energy that we are looking to undertake together.   CKredellUnknown

F. Noel Perry
Noel Perry is a businessman, philanthropist, and the founder of Next 10, a nonpartisan, nonprofit organization that educates and empowers Californians to improve the state’s future. Prior to founding Next 10, he was managing director of Baccharis Capital Inc., a socially responsible venture capital fund that he founded in 1991. Noel is also a Peace Corps alum, having served in Yemen where he built water projects in rural villages.
Colleen Kredell
Colleen Kredell is the director of research at Next 10, working with Noel to identify and manage research projects that support the Next 10 mission. She received her Master of Sustainable Development Practice at UC Berkeley where she was affiliated with the Climate Readiness Institute and ReNUWIt. Prior to Berkeley, she worked in climate and energy policy and programming in Washington, DC and at Stanford University.
About Next 10
Next 10 is focused on innovation and the intersection between the economy, the environment, and quality of life issues for all Californians. Our work is divided into a few key areas: expert-commissioned research, civic engagement tools and events, and stakeholder convenings. Our most recently published report, the ninth annual California Green Innovation Index, highlighted the growing challenge CA faces as a result of increasing transportation emissions in the state.
Among the many Next10 efforts they publish

The Green Innovation Index

California’s clean economy sector is diversifying and advancing according to new data highlighted in the 2016 California Green Innovation Index. Next 10's eighth edition of the California Green Innovation Index, for the first time, analyzes and ranks the Golden State’s economic and energy performance in comparison to the world’s 50 largest greenhouse gas (GHG) emitting nations, in addition to comparing 26 regions within California. The Index reveals new data about clean tech patents, investment levels, energy productivity levels, state GDP relative to greenhouse gas emissions, California's clean economy jobs and more. The 2015 edition of this research can be found at http://next10.org/international.

Main Menu
RAEL Info

Energy & Resources Group
310 Barrows Hall
University of California
Berkeley, CA 94720-3050
Phone: (510) 642-1640
Fax: (510) 642-1085
Email: ergdeskb@berkeley.edu


Projects

  • Open the Main Menu
  • People at RAEL

  • Open the Main Menu