Search Results for 'Energy Policy'

Kammen lectures at the Energy Policy Institute, University of Chicago

http://epic.uchicago.edu/events/towards_a_theory_of_energy_access

TOWARDS A THEORY OF ENERGY ACCESS

LECTURE

Date: April 13, 2015 5pm Location: Oriental Institute Museum Breasted Hall 1155 E 58th St Chicago IL, 60637 Renewable energy expert Daniel Kammen discusses prospects for energy sustainability and equality With 1.4 billion people lacking electricity to light their homes and provide other basic services, or to conduct business, and all of humanity (and particularly the poor) are in need of a decarbonized energy system can close the energy access gap and protect the global climate system.  With particular focus on addressing the energy needs of the underserved, we present an analytical framework informed by historical trends and contemporary technological, social, and institutional conditions that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services.  We find that the current day is a unique moment of innovation in decentralized energy networks based on super-efficient end-use technology and low-cost photovoltaics, supported by rapidly spreading information technology, particularly mobile phones. Collectively these disruptive technology systems could rapidly increase energy access, contributing to meeting the Millennium Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, energy systems.

Open Lecture: The Science and Policy of Sustainable Energy

In collaboration with the Areces Foundation and the AEEE, Economics for Energy organizes an academic workshop devoted to the state-of-the-art analysis and debate on topics of interest for the center with a small number of presentations provided by leading researchers in the field. The workshop will take place on February 15th (from 10.00 to 13.30) and targets researchers in the fields of energy and environmental economics. Those interested in participating in the workshop should send an email to info@eforenergy.org. 19:00: Seminar by Daniel Kammen in Madrid: "Open Session: The Science and Policy of Sustainable Energy"

The Energy Challenge in Sub-​​Saharan Africa: A Guide for Advocates and Policy-​​Makers

Screen Shot 2017-01-30 at 10.33.34 PM

REPORT LAUNCH AND BRIEFING

“The Energy Challenge in Sub-Saharan Africa:

A Guide for Advocates and Policy-Makers”

TUESDAY, JANUARY 31, 2017

12:00 - 1:30 p.m.

 

J.W. Marriott Hotel, 1331 Pennsylvania Avenue, NW, Washington, DC

Refreshments will be served   Efforts to address the energy challenges in sub-Saharan Africa have been animated by two main debates. First, what is the role for renewable energy sources versus fossil fuels in addressing the Region’s generation shortfall? Second, what is the role for centralized versus distributed generation capacity in addressing energy poverty? The U.S. is an established partner in many African countries and has played an important role in helping to shape the Region’s energy systems. Under the new Administration, energy issues will remain central to development efforts, and these same debates will continue to influence the Region’s energy future.   Please join Oxfam and the Renewable and Appropriate Energy Laboratory (RAEL) at the University of California Berkeley for the launch of two reports, each focusing on one of these debates. The launch will include a discussion with the authors of the reports who will share their expert perspectives and answer questions from the audience.   Who:  
  • Daniel M. Kammen,Distinguished Professor of Energy at the University of California, Berkeley; Founding Director of the
Renewable and Appropriate Energy Laboratory (RAEL); Science Envoy, U. S. State Department;
  • Nkiruka Avila, Research Scholar, RAEL, Energy and Resources Group, UC Berkeley
  • James Morrissey,Researcher, Oxfam America
  • Respondent: Katherine Steel, Energy Director, Power Africa
  • Moderator: Lisa Friedman,Editor, ClimateWire
  Where: J.W. Marriott Hotel - Washington, DC 1331 Pennsylvania Avenue, NW (Entrance on 14th Street, just off the corner of 14th Street and Pennsylvania Avenue)   Please RSVP so we can get an accurate head count by January 26 to Ladeene Freimuth at: ladeene@freimuthgroup.com. Oxfam America | +1 (202) 805 7459| Washington, DC www.oxfamamerica.org | facebook.com/oxfamamerica |twitter.com/oxfamamerica   _________________________________________________________________________________________ For those who cannot attend, the documents on energy access in sub-Saharan Africa, and on gaps in on-grid energy services and systems that will be presented at the release event will go live on 1/31 at the Oxfam Project website: https://www.oxfamamerica.org/explore/research-publications/the-energy-challenge-in-sub-saharan-africa/

Countercyclical energy and climate policy for the U.S.

Continuation of the U.S.s historical pattern addressing energy problems only in times of crisis is unlikely to catalyze a transition to an energy system with fewer adverse social impacts. Instead, the U.S. needs to bolster support for energy innovation when the perceived urgency of energy-related problems appears to be receding. Because of the lags involved in both the energy system and the climate system, decarbonizing the economy will require extraordinary persistence over decades. This need for sustained commitment is in contrast to the last several decades, which have been marked by volatility and cycles of boom and bust.  In contrast to the often -repeated phrase that one should never let a good crisis go to waste, the U.S. needs to most actively foster energy innovation when aspects of energy and climate problems appear to be improving. We describe the rationale for a countercyclical approach to energy and climate policy, which involves pre-commitment t o a set of policies that go into effect once a set of trigger conditions are met.

Underinvestment: The Energy Technology and R&D Policy Challenge

This Viewpoint examines data on international trends in energy research and development (R&D) funding, patterns of U.S. energy technology patents and R&D funding, and U.S. R&D intensities across selected sectors. The data present a disturbing picture: (i) Energy technology funding levels have declined signiÞcantly during the past two decades throughout the industrial world; (ii) U.S. R&D spending and patents, both overall and in the energy sector, have been highly correlated during the past two decades; and (iii) the R&D intensity of the U.S. energy sector is extremely low. It is argued that recent cutbacks in energy R&D are likely to reduce the capacity of the energy sector to innovate. The trends are particularly troubling given the need for increased international capacity to respond to emerging risks such as global climate change.  

Dr. Rebekah Shirley provides a roadmap for energy access in “The Conversation”

For the original piece, click here file-20180306-146650-1kgus7y by Dr. Rebekah Shirley is Research Director at Power for All and Visiting Research Scholar, at the Strathmore Energy Research Center (SERC) at Strathmore University and both alumni and Post-doctoral Fellow at RAEL. At least 110 million of the 600 million people still living without access to electricity in Africa live in urban areas. Most are within a stone throw from existing power grid infrastructure. In Nigeria, Tanzania, Ghana and Liberia alone there are up to 95 million people living in urban areas. All in close proximity to the grid. In Kenya about 70% of off-grid homes are located within 1.2km of a power line. And estimates for “under-the-grid” populations across sub-Saharan Africa range from 61% to 78%. Besides energy access being crucial for many basic human needs, these underserved populations represent a massive commercial opportunity for cash-strapped sub-Saharan African utilities. Electricity providers could reach tens of millions of densely packed customers without the cost of a last-mile rural grid extension. So, why aren’t these potential consumers connected to the formal grid? Urban communities often face many challenges in obtaining electricity access. These range from the prohibitively high cost of a connection, to the challenges of informal housing, the impact of power theft on services and socio-political marginalisation. In many cases, these obstacles are difficult to address successfully. However, recent advances in distributed renewable energy technologies mean a more affordable, faster to deploy, cleaner alternative is at hand in Africa. One that can step in where policy and utility reforms are wanting.

Barriers to grid connections

One of the major barriers to electrification is the cost of a grid connection. A grid connection in Kenya, for instance, is estimated at USD $ 400 per household. This is nearly one-third of the average per capita income of a Kenyan. Beyond pure cost barriers, urban communities often can’t access energy services for other socio-economic reasons. For instance, not being metered because they don’t have a formal address. Or living in in an area that is difficult to service – such as near flood plains or in informal housing settlements. Corruption among electricity service providers, power theft by customers and the establishment of electricity cartels also complicates and limits electricity access. Finally, the utilities themselves face many challenges in implementing reforms to get more people connected. Take the example of the Kenya Power and Lighting Company, which owns and operates most of the electricity transmission and distribution system. In 2015 it introduced a subsidised connection fee of US $150. This was done through the Last Mile Connectivity Project. In one year, this installment-based payment plan led to a 30-fold increase in legal electricity connections in impoverished neighbourhoods. But the project was marred by cost overruns and inflated and misreported new connection numbers. On top of this, newly connected households often have very low consumption levels and low-income customers were often unable to make payments, even at subsidised rates. Without the necessary infrastructural development, experts argue that the program puts a strain on the technical, commercial and financial resources of the utility. This means that the programme may find it difficult to generate revenue, recover costs or provide the service intended to new customers.

Decentralised renewables

Decentralised renewable energy technologies offer an important solutionfor “under-the-grid” electrification. They are simple, fast and agile. They have short installation times, and offer a reliable electricity service for informal settlements. Pay-as-you-go solar systems and appliances, for example, can provide a much lower barrier to entry. Compared to the high upfront connection costs noted earlier in Kenya, a 15-watt solar home system costs on average USD $9 per month for 36 months after which point the household owns its system. The renewable energy sector recognises this under-the-grid market. In fact, about 35% of solar lighting product sales in Kenya are made in peri-urban areas. And it’s a good bet. Evidence shows that the willingness to pay for decentralised renewables is much higher than a grid connection because they are seen as more reliable. Policies to support decentralised technologies include: integrated energy planning that incorporates these solutions, adopting and enforcing product quality control standards and providing financial incentives – like reduced import duties for products or local loan and grant programs. These solutions show that with the right approach, and simple innovations, Africa’s prospective urban customers can finally get access to electricity. Ben Attia, a Research Consultant with Greentech Media, contributed to the writing of this article

MIT Energy Initiative: Innovating for the clean energy economy

3 Questions: Innovating for the clean energy economy

Daniel Kammen of the University of California at Berkeley discusses current efforts in clean energy innovation and implementation, and what's coming next.

For a video of the talk and Q & A, click here.
Ivy Pepin | MIT Energy Initiative March 28, 2018 Screen Shot 2018-03-28 at 3.49.47 PM Daniel Kammen is a professor of energy at the University of California at Berkeley, with parallel appointments in the Energy and Resources Group (which he chairs), the Goldman School of Public Policy, and the Department of Nuclear Science and Engineering. Recently, he gave a talk at MIT examining the current state of clean energy innovation and implementation, both in the U.S. and internationally. Using a combination of analytical and empirical approaches, he discussed the strengths and weaknesses of clean energy efforts on the household, city, and regional levels. The MIT Energy Initiative (MITEI) followed up with him on these topics. Q: Your team has built energy transition models for several countries, including Chile, Nicaragua, China, and India. Can you describe how these models work and how they can inform global climate negotiations like the Paris Accords? A: My team, the Renewable and Appropriate Energy Laboratory has worked with three governments to build open-source models of the current state of their energy systems and possible opportunities for improvement. This model, SWITCH , is an exceptionally high-resolution platform for examining the costs, reliability, and carbon emissions of energy systems as small as Nicaragua’s and as large as China’s. The exciting recent developments in the cost and performance improvements of solar, wind, energy storage, and electric vehicles permit the planning of dramatically decarbonized systems that have a wide range of ancillary benefits: increased reliability, improved air quality, and monetizing energy efficiency, to name just a few. With the Paris Climate Accords placing 80 percent or greater decarbonization targets on all nations’ agendas (sadly, except for the U.S. federal government), the need for an "honest broker" for the costs and operational issues around power systems is key. Q: At the end of your talk, you mentioned a carbon footprint calculator that you helped create. How much do individual behaviors matter in addressing climate change? A: The carbon footprint, or CoolClimate project, directed by Dr. Chris Jones in my RAEL lab, is a visualization and behavioral economics tool that can be used to highlight the impacts of individual decisions at the household, school, and city level. We have used it to support city-city competitions for “California’s coolest city,” to explore the relative impacts of lifetime choices (buying an electric vehicle versus or along with changes of diet), and more. Q: You touched on the topic of the “high ambition coalition,” a 2015 United Nations Climate Change Conference goal of keeping warming under 1.5 degrees Celsius. Can you expand on this movement and the carbon negative strategies it would require? A: As we look at paths to a sustainable global energy system, efforts to limit warming to 1.5 degrees Celsius will require not only zeroing out industrial and agricultural emissions, but also removing carbon from the atmosphere. This demands increasing natural carbon sinks by preserving or expanding forests, sustaining ocean systems, and making agriculture climate- and water-smart. One pathway, biomass energy with carbon capture and sequestration, has both supporters and detractors. It involves growing biomass, using it for energy, and then sequestering the emissions. This talk was one in a series of MITEI seminars supported by IHS Markit.

Main Menu
RAEL Info

Energy & Resources Group
310 Barrows Hall
University of California
Berkeley, CA 94720-3050
Phone: (510) 642-1640
Fax: (510) 642-1085
Email: ergdeskb@berkeley.edu


Projects

  • Open the Main Menu
  • People at RAEL

  • Open the Main Menu