Search Results for 'Energy Policy'

Kammen lectures at the Energy Policy Institute, University of Chicago

http://epic.uchicago.edu/events/towards_a_theory_of_energy_access

TOWARDS A THEORY OF ENERGY ACCESS

LECTURE

Date: April 13, 2015 5pm Location: Oriental Institute Museum Breasted Hall 1155 E 58th St Chicago IL, 60637 Renewable energy expert Daniel Kammen discusses prospects for energy sustainability and equality With 1.4 billion people lacking electricity to light their homes and provide other basic services, or to conduct business, and all of humanity (and particularly the poor) are in need of a decarbonized energy system can close the energy access gap and protect the global climate system.  With particular focus on addressing the energy needs of the underserved, we present an analytical framework informed by historical trends and contemporary technological, social, and institutional conditions that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services.  We find that the current day is a unique moment of innovation in decentralized energy networks based on super-efficient end-use technology and low-cost photovoltaics, supported by rapidly spreading information technology, particularly mobile phones. Collectively these disruptive technology systems could rapidly increase energy access, contributing to meeting the Millennium Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, energy systems.

Open Lecture: The Science and Policy of Sustainable Energy

In collaboration with the Areces Foundation and the AEEE, Economics for Energy organizes an academic workshop devoted to the state-of-the-art analysis and debate on topics of interest for the center with a small number of presentations provided by leading researchers in the field. The workshop will take place on February 15th (from 10.00 to 13.30) and targets researchers in the fields of energy and environmental economics. Those interested in participating in the workshop should send an email to info@eforenergy.org. 19:00: Seminar by Daniel Kammen in Madrid: "Open Session: The Science and Policy of Sustainable Energy"

The Energy Challenge in Sub-​​Saharan Africa: A Guide for Advocates and Policy-​​Makers

Screen Shot 2017-01-30 at 10.33.34 PM

REPORT LAUNCH AND BRIEFING

“The Energy Challenge in Sub-Saharan Africa:

A Guide for Advocates and Policy-Makers”

TUESDAY, JANUARY 31, 2017

12:00 - 1:30 p.m.

 

J.W. Marriott Hotel, 1331 Pennsylvania Avenue, NW, Washington, DC

Refreshments will be served   Efforts to address the energy challenges in sub-Saharan Africa have been animated by two main debates. First, what is the role for renewable energy sources versus fossil fuels in addressing the Region’s generation shortfall? Second, what is the role for centralized versus distributed generation capacity in addressing energy poverty? The U.S. is an established partner in many African countries and has played an important role in helping to shape the Region’s energy systems. Under the new Administration, energy issues will remain central to development efforts, and these same debates will continue to influence the Region’s energy future.   Please join Oxfam and the Renewable and Appropriate Energy Laboratory (RAEL) at the University of California Berkeley for the launch of two reports, each focusing on one of these debates. The launch will include a discussion with the authors of the reports who will share their expert perspectives and answer questions from the audience.   Who:  
  • Daniel M. Kammen,Distinguished Professor of Energy at the University of California, Berkeley; Founding Director of the
Renewable and Appropriate Energy Laboratory (RAEL); Science Envoy, U. S. State Department;
  • Nkiruka Avila, Research Scholar, RAEL, Energy and Resources Group, UC Berkeley
  • James Morrissey,Researcher, Oxfam America
  • Respondent: Katherine Steel, Energy Director, Power Africa
  • Moderator: Lisa Friedman,Editor, ClimateWire
  Where: J.W. Marriott Hotel - Washington, DC 1331 Pennsylvania Avenue, NW (Entrance on 14th Street, just off the corner of 14th Street and Pennsylvania Avenue)   Please RSVP so we can get an accurate head count by January 26 to Ladeene Freimuth at: ladeene@freimuthgroup.com. Oxfam America | +1 (202) 805 7459| Washington, DC www.oxfamamerica.org | facebook.com/oxfamamerica |twitter.com/oxfamamerica   _________________________________________________________________________________________ For those who cannot attend, the documents on energy access in sub-Saharan Africa, and on gaps in on-grid energy services and systems that will be presented at the release event will go live on 1/31 at the Oxfam Project website: https://www.oxfamamerica.org/explore/research-publications/the-energy-challenge-in-sub-saharan-africa/

Countercyclical energy and climate policy for the U.S.

Continuation of the U.S.s historical pattern addressing energy problems only in times of crisis is unlikely to catalyze a transition to an energy system with fewer adverse social impacts. Instead, the U.S. needs to bolster support for energy innovation when the perceived urgency of energy-related problems appears to be receding. Because of the lags involved in both the energy system and the climate system, decarbonizing the economy will require extraordinary persistence over decades. This need for sustained commitment is in contrast to the last several decades, which have been marked by volatility and cycles of boom and bust.  In contrast to the often -repeated phrase that one should never let a good crisis go to waste, the U.S. needs to most actively foster energy innovation when aspects of energy and climate problems appear to be improving. We describe the rationale for a countercyclical approach to energy and climate policy, which involves pre-commitment t o a set of policies that go into effect once a set of trigger conditions are met.

Underinvestment: The Energy Technology and R&D Policy Challenge

This Viewpoint examines data on international trends in energy research and development (R&D) funding, patterns of U.S. energy technology patents and R&D funding, and U.S. R&D intensities across selected sectors. The data present a disturbing picture: (i) Energy technology funding levels have declined signiÞcantly during the past two decades throughout the industrial world; (ii) U.S. R&D spending and patents, both overall and in the energy sector, have been highly correlated during the past two decades; and (iii) the R&D intensity of the U.S. energy sector is extremely low. It is argued that recent cutbacks in energy R&D are likely to reduce the capacity of the energy sector to innovate. The trends are particularly troubling given the need for increased international capacity to respond to emerging risks such as global climate change.  

Foreign Policy editorial: The Beautiful Rivers — And the Dammed

To access the article, click here. The Beautiful Rivers—And the Dammed Advances in solar and wind power mean that hydropower is no longer the only renewable game in town—and that’s good news for the world’s rivers. BY JEFF OPPERMANCHRIS WEBERDANIEL KAMMEN NOVEMBER 23, 2018, 9:05 AM Foreign Policy - https://foreignpolicy.com/2018/11/23/the-beautiful-rivers-and-the-dammed/ Screen Shot 2018-11-23 at 10.33.05 PM Figure: Water is released from the floodgates of the Xiaolangdi dam on the Yellow River near Luoyang, China on June 29, 2016. (STR/AFP/Getty Images) In October, the Intergovernmental Panel on Climate Change released a report outlining strategies the world can pursue to keep global warming below 1.5 degrees Celsius and maintain healthy economies and ecosystems. But unless we are smart about how we implement that blueprint, it could cause irreparable damage to the world’s great rivers. The panel’s report urges a rapid transition to low-carbon, renewable sources of electricity. That call to action could trigger expanded investment in hydropower, which is currently the world’s main source for that kind of energy (70 percent as of 2017). But if that development follows the pattern of earlier dam-building, it could accelerate an alarming loss of rivers and their resources, including of the fish that feed hundreds of millions of people. The case of the Mekong River puts the problem into sharp relief. The river is the world’s most productive freshwater fishery—it provides nearly 20 percent of the annual global freshwater fish harvest, the primary source of protein for tens of millions of people in the region. Already, several hydropower dams on the Mekong are under construction or are moving through the planning process. Scientists estimate that those dams, if completed, will cut the river’s annual harvest by half. With the Mekong Delta’s sand supply cut off, scientists project that it will sink and shrink, with more than half underwater by the end of the century. The dams are also projected to trap within their reservoirs more than 90 percent of the sand that would otherwise flow into the Mekong Delta, which is home to 17 million people and produces 90 percent of Vietnam’s rice exports. With its sand supply cut off, scientists project that the delta will sink and shrink, with more than half underwater by the end of the century. It is easy to hear such stories and conclude that the world faces an agonizing dilemma: Must we sacrifice our rivers to save our climate? Even just a few years ago, that trade-off seemed unavoidable. With wind and solar power limited by their expense and variability, global hydropower was projected to nearly double by 2050. Massive dams were under construction or planned for many of the world’s great rivers, including the Yangtze, Mekong, and most tributaries of the Amazon. Some governments used climate and renewable energy objectives to justify these projects, even as scientists quantified their impacts and affected communities and indigenous groups protested. But we do not need to sacrifice rivers for zero-carbon energy. In the last two years, solar energy has rapidly become more economically viable due to technological improvements and to economies of scale in production and deployment. Whereas solar energy used to cost 20 cents or more per kilowatt-hour, new projects in Chile, Mexico, and Saudi Arabia have come in at one-tenth that cost. Wind energy costs have likewise plummeted. In 2017, a winning bid for a new wind farm in Mexico featured costs of around 2 cents per kWh. That was half the previous year’s lowest bid there. This makes solar and wind the price leaders across much of the world. Even with falling costs, the variability of wind and solar power remain a challenge. Simply put, in order for these technologies to offer reliable, round-the-clock electricity generation, there needs to be a way to store power when the wind is blowing and the sun is shining and then deploy it when the wind dies down or the sun sets. Fortunately, the costs for storage technologies are plummeting as well, with the cost of lithium ion batteries, capable of grid-scale storage, dropping by about 90 percent over the past few years. New technologies are emerging as well. For example, a Chilean solar power plant that uses molten salt as storage recently offered to provide 24-hour baseload electricity at less than 5 cents per kWh. That is comparable to or cheaper than most hydropower and fossil fuel options. Tesla and Google X, meanwhile, are pursuing “moonshot” solutions for storage technologies. Also tipping the scales toward wind and solar is that, among large infrastructure projects, hydropower dams have among the worst performance in terms of delays and cost overruns, in part due to the conflict and controversy surrounding them. Whereas some dams take a decade to complete, wind and solar power can be delivered through rapid, smaller-scale, and lower-risk projects that tend to engender far less conflict. Governments are taking note. Thailand earlier this year signaled that it would delay signing a power purchase agreement for Pak Beng, a 912-megawatt hydropower dam that Laos is planning for the Mekong. In announcing the delay, the country stated that it needed to revisit its energy strategy since other renewable sources, including wind and solar, were becoming increasingly viable. Thailand was slated to buy 90 percent of the dam’s electricity, so its change of plans could spell the end of the project. In Guyana, meanwhile, rising cost estimates and delays for the Amaila Falls hydropower project led the government and financiers to transfer funding intended for the dam toward a 100-megawatt solar project. The rapidly evolving renewable energy landscape doesn’t mean an end to hydropower, but rather a shift in its role. Hydropower reservoirs are currently the dominant form of energy storage for grids, and although other forms of storage are improving, they will continue to provide critical storage services in the near future. Upgraded older dams and strategically planned new projects, carefully located to minimize environmental and social disruption, can emphasize energy storage to facilitate adding large increments of wind and solar into a grid. Although it is now possible to build affordable, low-carbon wind and solar systems, they still face constraints, including political and social preferences for large infrastructure projects. Pak Beng may have been paused, but other dam projects on the Mekong and on other key rivers are moving forward. It would be a great tragedy if the renewable revolution arrived just a few years too late to save the world’s great rivers. Market reforms and new financial mechanisms can accelerate the adoption of more sustainable energy systems, as can innovative science. For example, the Renewable and Appropriate Energy Laboratory at the University of California, Berkeley recently developed and is using an energy planning model for Laos. The lab found that investments in solar panels (backed up by existing hydropower) could meet that nation’s objectives for selling electricity to neighbors—with greater returns and lower risks than the planned dams that threaten the Mekong’s fish harvests and the viability of its delta. There’s no need to continue accepting tragic trade-offs between healthy rivers and low-cost, reliable, and renewable electricity. The renewable revolution provides an opportunity to have both. Governments, funders, developers, and scientists should seize it. Jeff Opperman is the World Wildlife Fund’s global lead scientist for freshwater. Twitter: @jjopperman Chris Weber is the World Wildlife Fund’s global lead scientist for climate and energy. Daniel Kammen is a professor in and the chair of the Energy and Resources Group and a professor of public policy at the University of California, Berkeley. He has been a coordinating lead author for the Intergovernmental Panel on Climate Change and a science envoy for the U.S. State Department. Twitter: @dan_kammen Foreign Policy - https://foreignpolicy.com/2018/11/23/the-beautiful-rivers-and-the-dammed/    

RAEL contributes to Chapter 3: Energy systems. In State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report for the United States

To access the Energy Sector chapter, click here.

KEY FINDINGS
  1. In 2013, primary energy use in North America exceeded 125 exajoules,1 of which Canada was respon- sible for 11.9%, Mexico 6.5%, and the United States 81.6%. Of total primary energy sources, approxi- mately 81% was from fossil fuels, which contributed to carbon dioxide equivalent (CO2e)2 emissions lev- els, exceeding 1.76 petagrams of carbon, or about 20% of the global total for energy-related activities. Of these emissions, coal accounted for 28%, oil 44%, and natural gas 28% (very high confidence, likely).
  2. North American energy-related CO2e emissions have declined at an average rate of about 1% per year, or about 19.4 teragrams CO2e, from 2003 to 2014 (very high confidence).
  3. The shifts in North American energy use and CO2e emissions have been driven by factors such as 1) lower energy use, initially as a response to the global financial crisis of 2007 to 2008 (high confidence, very likely); but increasingly due to 2) greater energy efficiency, which has reduced the regional energy intensity of economic production by about 1.5% annually from 2004 to 2013, enabling economic growth while lowering energy CO2e emissions. Energy intensity has fallen annu- ally by 1.6% in the United States and 1.5% in Canada (very high confidence, very likely). Further factors driving lower carbon intensities include 3) increased renewable energy production (up 220 peta- joules annually from 2004 to 2013, translating to an 11% annual average increase in renewables) (high confidence, very likely); 4) a shift to natural gas from coal sources for industrial and electricity production (high confidence, likely); and 5) a wide range of new technologies, including, for example, alternative fuel vehicles (high confidence, likely).
  4. A wide range of plausible futures exists for the North American energy system in regard to carbon emissions. Forecasts to 2040, based on current policies and technologies, suggest a range of carbon emissions levels from an increase of over 10% to a decrease of over 14% (from 2015 carbon emissions levels). Exploratory and backcasting approaches suggest that the North American energy system emissions will not decrease by more than 13% (compared with 2015 levels) without both technological advances and changes in policy. For the United States, however, decreases in emissions could plausibly meet a national contribution to a global pathway consistent with a target of warming to 2°C at a cumu- lative cost of $1 trillion to $4 trillion (US$ 2005).
Note: Confidence levels are provided as appropriate for quantitative, but not qualitative, Key Findings and statements.
Contributing Authors
Peter J. Marcotullio, Hunter College, City University of New York (lead author)
Lori Bruhwiler, NOAA Earth System Research Laboratory; Steven Davis, University of California, Irvine; Jill Engel-Cox, National Renewable Energy Laboratory; John Field, Colorado State University; Conor Gately, Boston University; Kevin Robert Gurney, Northern Arizona University; Daniel M. Kammen, University of California, Berkeley; Emily McGlynn, University of California, Davis; James McMahon, Better Climate Research and Policy Analysis; William R. Morrow, III, Lawrence Berkeley National Laboratory; Ilissa B. Ocko, Environmental Defense Fund; Ralph Torrie, Canadian Energy Systems Analysis and Research Initiative.  
Recommended Citation for Chapter: Marcotullio, P. J., L. Bruhwiler, S. Davis, J. Engel-Cox, J. Field, C. Gately, K. R. Gurney, D. M. Kammen, E. McGlynn, J. McMahon, W. R. Morrow, III, I. B. Ocko, and R. Torrie, 2018: Chapter 3: Energy systems. InSecond State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report [Cavallaro, N., G. Shrestha, R. Birdsey, M. A. Mayes, R. G. Najjar, S. C. Reed, P. Romero-Lankao, and Z. Zhu (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, pp. 110-188, https://doi.org/10.7930/SOCCR2.2018.Ch3.   Screen Shot 2018-11-23 at 12.23.02 PM

Main Menu
RAEL Info

Energy & Resources Group
310 Barrows Hall
University of California
Berkeley, CA 94720-3050
Phone: (510) 642-1640
Fax: (510) 642-1085
Email: ergdeskb@berkeley.edu


Projects

  • Open the Main Menu
  • People at RAEL

  • Open the Main Menu