Search Results for 'Energy Policy'

Kammen lectures at the Energy Policy Institute, University of Chicago



Date: April 13, 2015 5pm Location: Oriental Institute Museum Breasted Hall 1155 E 58th St Chicago IL, 60637 Renewable energy expert Daniel Kammen discusses prospects for energy sustainability and equality With 1.4 billion people lacking electricity to light their homes and provide other basic services, or to conduct business, and all of humanity (and particularly the poor) are in need of a decarbonized energy system can close the energy access gap and protect the global climate system.  With particular focus on addressing the energy needs of the underserved, we present an analytical framework informed by historical trends and contemporary technological, social, and institutional conditions that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services.  We find that the current day is a unique moment of innovation in decentralized energy networks based on super-efficient end-use technology and low-cost photovoltaics, supported by rapidly spreading information technology, particularly mobile phones. Collectively these disruptive technology systems could rapidly increase energy access, contributing to meeting the Millennium Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, energy systems.

RAEL Lunch (note special Thursday date & location!): Michael Grubb, “Innovation, economics and policy in the energy revolution: Insights from the UK electricity transition and wider implications”

Please join us for a special joint Innovation, economics and policy in the energy revolution: Insights from the UK electricity transition and wider implications   Summary: This talk will outline both theory and practice of energy transition and decarbonisation, drawing on long experience in the UK which has been a battleground between different approaches to electricity regulation and the implications of decarbonisation – culminating in halving CO2 emissions from the sector from the levels in 1990. Innovation in both policy and technology has been fundamental to this.  Drawing on the book (joint with Profs Jean-Charles Hourcade and Karsten Neuhoff) Planetary Economics: Energy, Climate Change and The Three Domains of Sustainable Development, the talk will explain a broadened theoretical framework and show how this can reshape our view of both the economic and political dimensions of effective policy, including (but not confined to) to the energy transition.  The author will also present recent work on some implications of the approach for modelling of climate mitigation and the economic case for policy mixes.   20140611181026_h53982b12657bc   For more on Professor Grubb:, click here. Professor of Energy and Climate Change UCL - Institute for Sustainable Resources Central House | 14 Upper Woburn Place London | WC1H 0NN

Open Lecture: The Science and Policy of Sustainable Energy

In collaboration with the Areces Foundation and the AEEE, Economics for Energy organizes an academic workshop devoted to the state-of-the-art analysis and debate on topics of interest for the center with a small number of presentations provided by leading researchers in the field. The workshop will take place on February 15th (from 10.00 to 13.30) and targets researchers in the fields of energy and environmental economics. Those interested in participating in the workshop should send an email to 19:00: Seminar by Daniel Kammen in Madrid: "Open Session: The Science and Policy of Sustainable Energy"

The Energy Challenge in Sub-​​Saharan Africa: A Guide for Advocates and Policy-​​Makers

Screen Shot 2017-01-30 at 10.33.34 PM


“The Energy Challenge in Sub-Saharan Africa:

A Guide for Advocates and Policy-Makers”


12:00 - 1:30 p.m.


J.W. Marriott Hotel, 1331 Pennsylvania Avenue, NW, Washington, DC

Refreshments will be served   Efforts to address the energy challenges in sub-Saharan Africa have been animated by two main debates. First, what is the role for renewable energy sources versus fossil fuels in addressing the Region’s generation shortfall? Second, what is the role for centralized versus distributed generation capacity in addressing energy poverty? The U.S. is an established partner in many African countries and has played an important role in helping to shape the Region’s energy systems. Under the new Administration, energy issues will remain central to development efforts, and these same debates will continue to influence the Region’s energy future.   Please join Oxfam and the Renewable and Appropriate Energy Laboratory (RAEL) at the University of California Berkeley for the launch of two reports, each focusing on one of these debates. The launch will include a discussion with the authors of the reports who will share their expert perspectives and answer questions from the audience.   Who:  
  • Daniel M. Kammen,Distinguished Professor of Energy at the University of California, Berkeley; Founding Director of the
Renewable and Appropriate Energy Laboratory (RAEL); Science Envoy, U. S. State Department;
  • Nkiruka Avila, Research Scholar, RAEL, Energy and Resources Group, UC Berkeley
  • James Morrissey,Researcher, Oxfam America
  • Respondent: Katherine Steel, Energy Director, Power Africa
  • Moderator: Lisa Friedman,Editor, ClimateWire
  Where: J.W. Marriott Hotel - Washington, DC 1331 Pennsylvania Avenue, NW (Entrance on 14th Street, just off the corner of 14th Street and Pennsylvania Avenue)   Please RSVP so we can get an accurate head count by January 26 to Ladeene Freimuth at: Oxfam America | +1 (202) 805 7459| Washington, DC | |   _________________________________________________________________________________________ For those who cannot attend, the documents on energy access in sub-Saharan Africa, and on gaps in on-grid energy services and systems that will be presented at the release event will go live on 1/31 at the Oxfam Project website:

Countercyclical energy and climate policy for the U.S.

Continuation of the U.S.s historical pattern addressing energy problems only in times of crisis is unlikely to catalyze a transition to an energy system with fewer adverse social impacts. Instead, the U.S. needs to bolster support for energy innovation when the perceived urgency of energy-related problems appears to be receding. Because of the lags involved in both the energy system and the climate system, decarbonizing the economy will require extraordinary persistence over decades. This need for sustained commitment is in contrast to the last several decades, which have been marked by volatility and cycles of boom and bust.  In contrast to the often -repeated phrase that one should never let a good crisis go to waste, the U.S. needs to most actively foster energy innovation when aspects of energy and climate problems appear to be improving. We describe the rationale for a countercyclical approach to energy and climate policy, which involves pre-commitment t o a set of policies that go into effect once a set of trigger conditions are met.

Underinvestment: The Energy Technology and R&D Policy Challenge

This Viewpoint examines data on international trends in energy research and development (R&D) funding, patterns of U.S. energy technology patents and R&D funding, and U.S. R&D intensities across selected sectors. The data present a disturbing picture: (i) Energy technology funding levels have declined signiÞcantly during the past two decades throughout the industrial world; (ii) U.S. R&D spending and patents, both overall and in the energy sector, have been highly correlated during the past two decades; and (iii) the R&D intensity of the U.S. energy sector is extremely low. It is argued that recent cutbacks in energy R&D are likely to reduce the capacity of the energy sector to innovate. The trends are particularly troubling given the need for increased international capacity to respond to emerging risks such as global climate change.  

Prof. Deborah Sunter profiled by the US Department of Energy

Deborah Sunter, Ph.D., spent two years as a postdoctoral fellow with the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy in the Postdoctoral Research Award Program. Sunter’s research explored and expanded a modeling platform designed to help evaluate and meet the United States’ growing energy demands. Her research and contributions have been recognized in the global scientific community.   For the original, click here. Screen Shot 2019-05-12 at 2.43.03 PM

Sustaining our Future through Energy Security

Sixty-six percent of the world’s population will be living in urban areas by 2050, according to the United Nations 2014 World Urbanization Prospects report. In the United States, more than 80% of the population already lives in urban areas. The consensus affirms that increased urbanization is the future. As global urbanization and population growth expand, so does energy consumption. Energy security requires an understanding of future energy demands and the environments from which the demands originate. Global population growth and rapid urbanization are being tracked, but climate change throws in the wild card of uncertainty. Urban energy systems are vulnerable to climate change and extreme weather, including storms, flooding and sea-level rise. Urban areas must be resilient to handle these changing conditions if they are to remain sustainable and continue to grow. Mechanical engineer Deborah Sunter, Ph.D., is one of many scientists who have researched the very complex issue of energy security. “Every day is an adventure with new challenges, new collaborations and new ideas,” said Sunter. Sunter received a postdoctoral appointment in the Renewable and Appropriate Energy Laboratory (RAEL) at the University of California, Berkeley. Her appointment to the Postdoctoral Research Award Program was funded by the Solar Energy Technologies Office of the U.S. Department of Energy (DOE), Office of Energy Efficiency & Renewable Energy Research Participation Program. The prestigious postdoctoral research award supports scientific research in energy efficiency and renewable energy by attracting scientists and engineers to pursue breakthrough technologies in energy research. Sunter spent her two-year appointment at RAEL exploring the SWITCH (Solar and Wind Energy Integrated with Transmission and Conventional Sources) modeling platform. SWITCH is used to examine cost-effective investment decisions for meeting electricity demand, with an emphasis on integrating renewable energy into the electrical grid. Created as an investment planning tool, the model explores the cost and feasibility of future energy initiatives while simultaneously ensuring that current energy demands are met and policy goals are reached at the lowest cost possible. SWITCH meets this objective by making a series of optimized decisions. For example, all power plants have an expected lifetime. When a power plant reaches the end of its life expectancy, SWITCH examines whether it is more cost-effective to upgrade the existing power plant or to retire the power plant and build a new one. SWITCH can determine which type of power plants should be built and where these plants should be located with the goal to produce low-cost energy systems that meet reliability, performance and environmental quality standards. SWITCH was originally designed and produced by Daniel Kammen, Ph.D., and his team at the Energy and Resources Group of the University of California, Berkeley. Kammen served as Sunter’s mentor throughout the program. Since producing the initial papers in 2012, Kammen and a series of graduate students and postdoctoral fellows have expanded the toolkit significantly, and SWITCH continues to undergo improvements at RAEL. RAEL is an interdisciplinary laboratory founded by Kammen in 1999; it seeks to advance renewable and appropriate energy through technology innovation and policy implementation. Sunter’s appointment and access to SWITCH allowed her to research the role of technology innovation and policy in reducing emissions, improving efficiency and supplying more renewable energy to the U.S. electrical grid. During her time, Sunter expanded the SWITCH model, originally designed for the Western Electricity Coordinating Council, to encompass the entire continental United States. Sunter helped to convert SWITCH from an older programming language to Python to increase accessibility to the scientific community. She also partnered with private companies to add new emerging technologies to the program’s repertoire, such as Google Project Sunroof and CalWave Power Technologies. Sunter’s accomplishments during her postdoctoral experience are numerous. Sunter published many works with her colleagues during her appointment, most notably a high-impact article with Kammen in the journal Science. The article on urban energy systems has received much attention in the scientific community. Sunter also credits her postdoctoral experience for expanding her research horizons. “Beyond the core research project, I have been able to learn a new subject area, data science, and engage with the greater scientific community in ways that I had not done before,” said Sunter. Sunter used her newly learned skills to win a data science hackathon in solar energy as well as organize a successful forum on data science for sustainability. Sunter has been invited to speak on her research at more than a dozen scientific engagements, and she was selected to be on a team of international authors for a book on inclusive green growth metrics. Throughout her appointment, she shared her expertise with undergraduates at the lab.

“I have been able to do more during this research experience than I possibly could have imagined. It opened doors I didn’t realize I had access to,” Sunter said. “This has been one of the most professionally rewarding experiences of my life. I am incredibly grateful for this opportunity.”

Immediately following the completion of the program, Sunter became a research fellow at the Berkeley Institute for Data Science. Most recently, she has accepted a position as a professor at Tufts University in the Department of Mechanical Engineering for the fall of 2018. The Postdoctoral Research Award Program is funded by the Solar Energy Technologies Office of the U.S. Department of Energy (DOE), Office of Energy Efficiency & Renewable Energy Research Participation Program. The program is administered through DOE’s Oak Ridge Institute for Science and Education (ORISE). ORISE is managed for DOE by ORAU.

Main Menu

Energy & Resources Group
310 Barrows Hall
University of California
Berkeley, CA 94720-3050
Phone: (510) 642-1640
Fax: (510) 642-1085


  • Open the Main Menu
  • People at RAEL

  • Open the Main Menu