Search Results for 'energy'

Affordable Energy for Humanity: A Global Movement to Support Universal Clean Energy Access

Bold actions are necessary to unlock the potential for economic empowerment by eradicating energy poverty (UN Sustainable Development Goal 7) by 2030. This will require a sustained commitment to significant levels of new investments. Delivering on the promise of universal energy access and improved life quality has eluded policy-makers and governments over the past seven decades. Affordability of energy services for every global citizen, spanning vastly diverse regions and local contexts, requires the development and massive diffusion of technologies that offer ``point-of-use'' options combined with new business models. Social innovations and flexible governance approaches will also need to be integrated with technological advances. The scope and scale of developmental change span large-scale grid systems to decentralized distributed resources at community levels to the households. We recommend a global network of ``energy access innovation centers'' dedicated to providing a dynamic ``extension service'' that bolsters the entire supply chain of talent and expertise, design and operational requirements of system deployment and capacity to embed low-cost, high-performance next-generation technological solutions in the field. To meet the needs of those at the base of the economic and social pyramid, the dual challenges of economic development and transition to a low-carbon energy future make clean energy access the quintessential challenge of the 21st century.

No need to dam free flowing rivers to meet worlds climate and energy targets

Originally published in Mongabay:

  • In a comment article published in the Nature last month, scientists argue that an “energy future in which both people and rivers thrive” is possible with better planning.
  • The hydropower development projects now underway threaten the world’s last free-flowing rivers, posing severe threats to local human communities and the species that call rivers home. A recent study found that just one-third of the world’s 242 largest rivers remain free-flowing.
  • The benefits of better planning to meet increasing energy demands could be huge: A report released by WWF and The Nature Conservancy ahead of the World Hydropower Congress, held in Paris last month, finds that accelerating the deployment of non-hydropower renewable energy could prevent the fragmentation of nearly 165,000 kilometers (more than 102,500 miles) of river channels.
In a comment article published in the Nature last month, scientists argue that an “energy future in which both people and rivers thrive” is possible with better planning. For decades, hydropower dams have been a go-to solution for electrifying the developing world. There are more than 60,000 large dams around the globe, and as the demand for clean energy in Africa, South America, and Southeast Asia continues to grow, hundreds more are currently in the planning stages. Hydroelectric dams have their advantages, such as providing a steady supply of baseload electricity that can be adjusted quickly to meet fluctuating demand and zero hazardous wastes or byproducts to dispose of. But according to the authors of the Nature article, by Rafael J. P. Schmitt at Stanford University, Noah Kittner, Matthias Kondolf, and Daniel M Kammen of the University of California, at Berkeley “Hydropower needs to be viewed as part of a broader strategy for clean energy, in which the costs and benefits of different sources should be assessed and weighed against each other.” The hydropower development projects now underway threaten the world’s last free-flowing rivers, posing severe threats to local human communities and the species that call rivers home. The Cambodian government, for instance, is proposing to build the 11,000-gigawatt-hour Sambor dam on the Mekong River, which “would prevent fish from migrating, threatening fisheries worth billions of dollars. It would further cut the supply of sediment to the Mekong Delta, where some of the region’s most fertile farmland is at risk of sinking below sea level by the end of the century,” according to Schmitt and colleagues. “And the dam would do little to bring electricity or jobs to local villagers: much of its hydropower would be exported to big cities in neighbouring nations, far from the rivers that will be affected.” A recent study found that just one-third of the world’s 242 largest rivers remain free-flowing, mostly in remote regions of the Amazon Basin, the Arctic, and the Congo Basin. As Schmitt and co-authors note in the Nature article, however, hydropower is just one of many clean energy options available today, and technologies like solar panels or wind turbines can produce similar amounts of electricity as large hydroelectric dams at roughly the same cost. “[S]preading a variety of renewable energy sources strategically across river basins could produce power reliably and cheaply while protecting these crucial rivers and their local communities,” the researchers write. “Solar, wind, microhydro and energy-storage technologies have caught up with large hydropower in price and effectiveness. Hundreds of small generators woven into a ‘smart grid’ (which automatically responds to changes in supply and demand) can outcompete a big dam.” Schmitt and team say that, in order to keep the world’s remaining free-flowing rivers unobstructed while increasing access to electricity in developing nations at the same time, strategies for deploying renewable energy technologies and expanding hydropower projects must be made at the basin-wide or regional level and strike the right balance between impacts and benefits of all available clean electricity generation methods. “On the major tributaries of the lower Mekong, for example, dams have been built ad hoc. Existing ones exploit only 50% of the tributaries’ potential hydropower yet prevent 90% of their sand load from reaching the delta,” the researchers report. “There was a better alternative: placing more small dams higher up the rivers could have released 70% of the power while trapping only 20% of the sand.” Site selection for solar and wind farms must be just as strategic as for new dams. “Impacts of these projects on the landscape need to be considered, too. Solar and wind farms might be built on patches of land that have low conservation value, such as along roads, or even floating on hydropower reservoirs,” Schmitt and co-authors suggest. “Solar panels and small wind turbines can be put on or near buildings to minimize infrastructure and reduce energy losses in transmission.” The scientists recommend that organizations and governments who manage river basins apply a “holistic perspective” to energy planning that takes into account all non-hydropower renewable energy options, energy efficiency measures, energy demand management, and the risks posed by global climate change — as decreasing river flows in a more drought-prone, warmer world could severely impact the output of hydroelectric dams. But in order to properly evaluate all of the trade-offs when designing a renewable energy strategy, we need to know much more about river ecosystems and the human communities that depend on them: “Researchers need to fill data gaps across whole river basins, from fish migration and sediment transport to community empowerment and impacts on food systems,” Schmitt and co-authors write. “The costs of lost ecosystem services over the life cycle of energy projects must be included in cost–benefit analyses. Such research is cheap compared with the costs of building dams and mitigating environmental impacts.” The benefits of better planning to meet increasing energy demands could be huge: A report released by WWF and The Nature Conservancy ahead of the World Hydropower Congress, held in Paris last month, finds that accelerating the deployment of non-hydropower renewable energy could prevent the fragmentation of nearly 165,000 kilometers (more than 102,500 miles) of river channels. “We can not only envision a future where electricity systems are accessible, affordable and powering economies with a mix of renewable energy, we can now build that future,” Jeff Opperman, a freshwater scientist with WWF and lead author of the report, said in a statement. “If we do not rapidly seize the opportunity to accelerate the renewable revolution, unnecessary, high-impact hydropower dams could still be built on iconic rivers such as the Mekong, Irrawaddy, and Amazon — and dozens or hundreds of others around the world. It would be a great tragedy if the full social and environmental benefits of the renewable revolution arrived just a few years too late to safeguard the world’s great rivers and all the diverse benefits they provide to people and nature.”
Pamok, Laos. Life along the banks of the Mekong River. © Nicolas Axelrod / Ruom for WWF.
CITATIONS • Grill et al. (2019). Mapping the world’s free-flowing rivers. Nature. doi:10.1038/s41586-019-1111-9 • Opperman, J., J. Hartmann, M. Lambrides, J.P. Carvallo, E. Chapin, S. Baruch-Mordo, B. Eyler, M. Goichot, J. Harou, J. Hepp, D. Kammen, J. Kiesecker, A. Newsock, R. Schmitt, M. Thieme, A. Wang, and C. Weber. (2019). Connected and flowing: a renewable future for rivers, climate and people. WWF and The Nature Conservancy, Washington, DC. • Schmitt, R. J., Kittner, N., Kondolf, G. M., & Kammen, D. M. (2019). Deploy diverse renewables to save tropical rivers. Nature 569, 330-332. doi:10.1038/d41586-019-01498-8

Prof. Deborah Sunter profiled by the US Department of Energy

Deborah Sunter, Ph.D., spent two years as a postdoctoral fellow with the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy in the Postdoctoral Research Award Program. Sunter’s research explored and expanded a modeling platform designed to help evaluate and meet the United States’ growing energy demands. Her research and contributions have been recognized in the global scientific community.   For the original, click here. Screen Shot 2019-05-12 at 2.43.03 PM

Sustaining our Future through Energy Security

Sixty-six percent of the world’s population will be living in urban areas by 2050, according to the United Nations 2014 World Urbanization Prospects report. In the United States, more than 80% of the population already lives in urban areas. The consensus affirms that increased urbanization is the future. As global urbanization and population growth expand, so does energy consumption. Energy security requires an understanding of future energy demands and the environments from which the demands originate. Global population growth and rapid urbanization are being tracked, but climate change throws in the wild card of uncertainty. Urban energy systems are vulnerable to climate change and extreme weather, including storms, flooding and sea-level rise. Urban areas must be resilient to handle these changing conditions if they are to remain sustainable and continue to grow. Mechanical engineer Deborah Sunter, Ph.D., is one of many scientists who have researched the very complex issue of energy security. “Every day is an adventure with new challenges, new collaborations and new ideas,” said Sunter. Sunter received a postdoctoral appointment in the Renewable and Appropriate Energy Laboratory (RAEL) at the University of California, Berkeley. Her appointment to the Postdoctoral Research Award Program was funded by the Solar Energy Technologies Office of the U.S. Department of Energy (DOE), Office of Energy Efficiency & Renewable Energy Research Participation Program. The prestigious postdoctoral research award supports scientific research in energy efficiency and renewable energy by attracting scientists and engineers to pursue breakthrough technologies in energy research. Sunter spent her two-year appointment at RAEL exploring the SWITCH (Solar and Wind Energy Integrated with Transmission and Conventional Sources) modeling platform. SWITCH is used to examine cost-effective investment decisions for meeting electricity demand, with an emphasis on integrating renewable energy into the electrical grid. Created as an investment planning tool, the model explores the cost and feasibility of future energy initiatives while simultaneously ensuring that current energy demands are met and policy goals are reached at the lowest cost possible. SWITCH meets this objective by making a series of optimized decisions. For example, all power plants have an expected lifetime. When a power plant reaches the end of its life expectancy, SWITCH examines whether it is more cost-effective to upgrade the existing power plant or to retire the power plant and build a new one. SWITCH can determine which type of power plants should be built and where these plants should be located with the goal to produce low-cost energy systems that meet reliability, performance and environmental quality standards. SWITCH was originally designed and produced by Daniel Kammen, Ph.D., and his team at the Energy and Resources Group of the University of California, Berkeley. Kammen served as Sunter’s mentor throughout the program. Since producing the initial papers in 2012, Kammen and a series of graduate students and postdoctoral fellows have expanded the toolkit significantly, and SWITCH continues to undergo improvements at RAEL. RAEL is an interdisciplinary laboratory founded by Kammen in 1999; it seeks to advance renewable and appropriate energy through technology innovation and policy implementation. Sunter’s appointment and access to SWITCH allowed her to research the role of technology innovation and policy in reducing emissions, improving efficiency and supplying more renewable energy to the U.S. electrical grid. During her time, Sunter expanded the SWITCH model, originally designed for the Western Electricity Coordinating Council, to encompass the entire continental United States. Sunter helped to convert SWITCH from an older programming language to Python to increase accessibility to the scientific community. She also partnered with private companies to add new emerging technologies to the program’s repertoire, such as Google Project Sunroof and CalWave Power Technologies. Sunter’s accomplishments during her postdoctoral experience are numerous. Sunter published many works with her colleagues during her appointment, most notably a high-impact article with Kammen in the journal Science. The article on urban energy systems has received much attention in the scientific community. Sunter also credits her postdoctoral experience for expanding her research horizons. “Beyond the core research project, I have been able to learn a new subject area, data science, and engage with the greater scientific community in ways that I had not done before,” said Sunter. Sunter used her newly learned skills to win a data science hackathon in solar energy as well as organize a successful forum on data science for sustainability. Sunter has been invited to speak on her research at more than a dozen scientific engagements, and she was selected to be on a team of international authors for a book on inclusive green growth metrics. Throughout her appointment, she shared her expertise with undergraduates at the lab.

“I have been able to do more during this research experience than I possibly could have imagined. It opened doors I didn’t realize I had access to,” Sunter said. “This has been one of the most professionally rewarding experiences of my life. I am incredibly grateful for this opportunity.”

Immediately following the completion of the program, Sunter became a research fellow at the Berkeley Institute for Data Science. Most recently, she has accepted a position as a professor at Tufts University in the Department of Mechanical Engineering for the fall of 2018. The Postdoctoral Research Award Program is funded by the Solar Energy Technologies Office of the U.S. Department of Energy (DOE), Office of Energy Efficiency & Renewable Energy Research Participation Program. The program is administered through DOE’s Oak Ridge Institute for Science and Education (ORISE). ORISE is managed for DOE by ORAU.

Clean energy in Bangladesh

Screen Shot 2019-03-27 at 12.41.21 PM Summary: Energy poverty, is arguably the most pervasive and crippling threat society faces today. Lack of access impacts several billion people, with immediate health, educational, economic, and social damages. Furthermore, how this problem is addressed will result in the largest accelerant of global pollution, or the largest opportunity to pivot away from fossil-fuels onto the needed clean energy path. While debate exists on the optimal path or paths to wean our economy from fossil fuels, there is no question that technically we have today a sufficient knowledge and technological foundation to launch and to even complete the decarbonisation

RAEL to co-​​sponsor “Clean Energy Collaboration” meeting in Kuching, Sarawak, Malaysia

In partnership with Save Rivers, PACOS Trust, JOAS, and the UNDP, RAEL will sponsor and present at the March 15 & 16 "Clean Energy Collaboration" meeting in Kuching, Sarawak, Malaysia.  The meeting is focused on "Sustainable and Inclusive Energy Pathways for Sarawak and Malaysia. For meeting information, click here. Screen Shot 2019-03-11 at 9.55.37 AM Screen Shot 2019-03-11 at 9.55.49 AM Coverage includes: The Malaysian Insight, "Dam projects steal from Malaysians, says former US Science Envoy Daniel Kammen", March 7, 2019 The Borneo Post, "Conference looks to push sustainable power agenda", March 7, 2019 The Borneo Post, "Confab on Clean Energy Collaboration to deliberate on sustainable, inclusive energy pathways", January 15, 2019      

RAEL Lunch (note special Thursday date & location!): Michael Grubb, “Innovation, economics and policy in the energy revolution: Insights from the UK electricity transition and wider implications”

Please join us for a special joint Innovation, economics and policy in the energy revolution: Insights from the UK electricity transition and wider implications   Summary: This talk will outline both theory and practice of energy transition and decarbonisation, drawing on long experience in the UK which has been a battleground between different approaches to electricity regulation and the implications of decarbonisation – culminating in halving CO2 emissions from the sector from the levels in 1990. Innovation in both policy and technology has been fundamental to this.  Drawing on the book (joint with Profs Jean-Charles Hourcade and Karsten Neuhoff) Planetary Economics: Energy, Climate Change and The Three Domains of Sustainable Development, the talk will explain a broadened theoretical framework and show how this can reshape our view of both the economic and political dimensions of effective policy, including (but not confined to) to the energy transition.  The author will also present recent work on some implications of the approach for modelling of climate mitigation and the economic case for policy mixes.   20140611181026_h53982b12657bc   For more on Professor Grubb:, click here. Professor of Energy and Climate Change UCL - Institute for Sustainable Resources Central House | 14 Upper Woburn Place London | WC1H 0NN

Congratulations to Serena Patel for her work on community energy in Kenya — winner of the BERC People’s Choice Award

Congratulations to Serena Patel, Energy Engineering and RAEL student, for her work on community energy in Kenya - winner of the People's Choice Award at the recent Berkeley Energy Resources Collaborative 2019 Summit! Back to Africa next summer for more research, too! 52598315_1609707262509421_22784144375283712_n and for an up-close view of her work on clean energy and mini-grid development, here is the close-up: Screen Shot 2019-02-23 at 10.43.10 PM A Green New Deal for Kenya!

RAEL Lunch: 27 February — Advancing Energy and Climate Planning Models: Optimization Methods, Variable Renewables, and Smart Grids

James Merrick’s research focuses on the improvement of mathematical modeling methods to address a variety of energy and climate planning problems. This talk will discuss this research, with an emphasis on how to structure models to provide economic and policy insight, focusing on appropriate valuation of renewables and energy storage options. James completed his PhD in Management Science and Engineering at Stanford University in January 2018. He previously completed a dual masters degree in Technology & Policy and Electrical Engineering & Computer Science at MIT, and a Bachelor of Engineering degree at University College Dublin. Since completing his PhD, James applies his research to, and builds optimization models for, EPRI, a stealth robotics startup in San Francisco, and a major electricity generator in Ireland. In addition, James is undertaking a number of research projects with colleagues at NASA, EPRI, and Stanford and when possible, likes to help develop his family’s farm in Ireland. unnamed  

ASEAN grid flexibility: Preparedness for grid integration of renewable energy

In 2015, ASEAN established a goal of increasing renewable energy share in its energy portfolio from approximately 13–23% by 2025. Renewable electricity, especially intermittent and variable sources, presents challenges for grid operators due to the uncertain timing and quantity of electricity supply. Grid flexibility, the electric grid's ability to respond to changing demands and supply, now stands a key resource in responding to these uncertainties while maximizing the cost-effective role of clean energy. We develop and apply a grid flexibility assessment tool to assess ASEAN's current grid flexibility using six quantitative indicators: grid reliability, electricity market access; load profile ramp capacity; quality of forecasting tools; proportion of electricity generation from natural gas; and renewable energy diversity. We find that ASEAN nations cluster into three groups: better; moderately; and the least prepared nations. We develop an analytical ramp rate calculator to quantify expected load ramps for ASEAN in an integrated ASEAN Power Grid scenario. The lack of forecasting systems and limited electricity market access represent key weaknesses and areas where dramatic improvements can become cost-effective means to increase regional grid flexibility. As ASEAN pursues renewable energy targets, regional cooperation remains essential to address identified challenges. Member nations need to increase grid flexibility capacity to adequately prepare for higher penetrations of renewable electricity and lower overall system costs.

Main Menu

Energy & Resources Group
310 Barrows Hall
University of California
Berkeley, CA 94720-3050
Phone: (510) 642-1640
Fax: (510) 642-1085


  • Open the Main Menu
  • People at RAEL

  • Open the Main Menu