Search Results for 'energy'

RAEL contributes to Chapter 3: Energy systems. In State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report for the United States

To access the Energy Sector chapter, click here.

KEY FINDINGS
  1. In 2013, primary energy use in North America exceeded 125 exajoules,1 of which Canada was respon- sible for 11.9%, Mexico 6.5%, and the United States 81.6%. Of total primary energy sources, approxi- mately 81% was from fossil fuels, which contributed to carbon dioxide equivalent (CO2e)2 emissions lev- els, exceeding 1.76 petagrams of carbon, or about 20% of the global total for energy-related activities. Of these emissions, coal accounted for 28%, oil 44%, and natural gas 28% (very high confidence, likely).
  2. North American energy-related CO2e emissions have declined at an average rate of about 1% per year, or about 19.4 teragrams CO2e, from 2003 to 2014 (very high confidence).
  3. The shifts in North American energy use and CO2e emissions have been driven by factors such as 1) lower energy use, initially as a response to the global financial crisis of 2007 to 2008 (high confidence, very likely); but increasingly due to 2) greater energy efficiency, which has reduced the regional energy intensity of economic production by about 1.5% annually from 2004 to 2013, enabling economic growth while lowering energy CO2e emissions. Energy intensity has fallen annu- ally by 1.6% in the United States and 1.5% in Canada (very high confidence, very likely). Further factors driving lower carbon intensities include 3) increased renewable energy production (up 220 peta- joules annually from 2004 to 2013, translating to an 11% annual average increase in renewables) (high confidence, very likely); 4) a shift to natural gas from coal sources for industrial and electricity production (high confidence, likely); and 5) a wide range of new technologies, including, for example, alternative fuel vehicles (high confidence, likely).
  4. A wide range of plausible futures exists for the North American energy system in regard to carbon emissions. Forecasts to 2040, based on current policies and technologies, suggest a range of carbon emissions levels from an increase of over 10% to a decrease of over 14% (from 2015 carbon emissions levels). Exploratory and backcasting approaches suggest that the North American energy system emissions will not decrease by more than 13% (compared with 2015 levels) without both technological advances and changes in policy. For the United States, however, decreases in emissions could plausibly meet a national contribution to a global pathway consistent with a target of warming to 2°C at a cumu- lative cost of $1 trillion to $4 trillion (US$ 2005).
Note: Confidence levels are provided as appropriate for quantitative, but not qualitative, Key Findings and statements.
Contributing Authors
Peter J. Marcotullio, Hunter College, City University of New York (lead author)
Lori Bruhwiler, NOAA Earth System Research Laboratory; Steven Davis, University of California, Irvine; Jill Engel-Cox, National Renewable Energy Laboratory; John Field, Colorado State University; Conor Gately, Boston University; Kevin Robert Gurney, Northern Arizona University; Daniel M. Kammen, University of California, Berkeley; Emily McGlynn, University of California, Davis; James McMahon, Better Climate Research and Policy Analysis; William R. Morrow, III, Lawrence Berkeley National Laboratory; Ilissa B. Ocko, Environmental Defense Fund; Ralph Torrie, Canadian Energy Systems Analysis and Research Initiative.  
Recommended Citation for Chapter: Marcotullio, P. J., L. Bruhwiler, S. Davis, J. Engel-Cox, J. Field, C. Gately, K. R. Gurney, D. M. Kammen, E. McGlynn, J. McMahon, W. R. Morrow, III, I. B. Ocko, and R. Torrie, 2018: Chapter 3: Energy systems. InSecond State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report [Cavallaro, N., G. Shrestha, R. Birdsey, M. A. Mayes, R. G. Najjar, S. C. Reed, P. Romero-Lankao, and Z. Zhu (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, pp. 110-188, https://doi.org/10.7930/SOCCR2.2018.Ch3.   Screen Shot 2018-11-23 at 12.23.02 PM

Chapter 3: Energy systems. In Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report

KEY FINDINGS
  1. In 2013, primary energy use in North America exceeded 125 exajoules,1 of which Canada was respon- sible for 11.9%, Mexico 6.5%, and the United States 81.6%. Of total primary energy sources, approxi- mately 81% was from fossil fuels, which contributed to carbon dioxide equivalent (CO2e)2 emissions lev- els, exceeding 1.76 petagrams of carbon, or about 20% of the global total for energy-related activities. Of these emissions, coal accounted for 28%, oil 44%, and natural gas 28% (very high confidence, likely).
  2. North American energy-related CO2e emissions have declined at an average rate of about 1% per year, or about 19.4 teragrams CO2e, from 2003 to 2014 (very high confidence).
  3. The shifts in North American energy use and CO2e emissions have been driven by factors such as 1) lower energy use, initially as a response to the global financial crisis of 2007 to 2008 (high confidence, very likely); but increasingly due to 2) greater energy efficiency, which has reduced the regional energy intensity of economic production by about 1.5% annually from 2004 to 2013, enabling economic growth while lowering energy CO2e emissions. Energy intensity has fallen annu- ally by 1.6% in the United States and 1.5% in Canada (very high confidence, very likely). Further factors driving lower carbon intensities include 3) increased renewable energy production (up 220 peta- joules annually from 2004 to 2013, translating to an 11% annual average increase in renewables) (high confidence, very likely); 4) a shift to natural gas from coal sources for industrial and electricity production (high confidence, likely); and 5) a wide range of new technologies, including, for example, alternative fuel vehicles (high confidence, likely).
  4. A wide range of plausible futures exists for the North American energy system in regard to carbon emissions. Forecasts to 2040, based on current policies and technologies, suggest a range of carbon emissions levels from an increase of over 10% to a decrease of over 14% (from 2015 carbon emissions levels). Exploratory and backcasting approaches suggest that the North American energy system emissions will not decrease by more than 13% (compared with 2015 levels) without both technological advances and changes in policy. For the United States, however, decreases in emissions could plausibly meet a national contribution to a global pathway consistent with a target of warming to 2°C at a cumu- lative cost of $1 trillion to $4 trillion (US$ 2005).
Note: Confidence levels are provided as appropriate for quantitative, but not qualitative, Key Findings and statements. 1 One exajoule is equal to one quintillion (1018) joules, a derived unit of energy in the International System of Units. 2 Carbon dioxide equivalent (CO2e): Amount of CO2 that would produce the same effect on the radiative balance of Earth’s climate system as another greenhouse gas, such as methane (CH4) or nitrous oxide (N2O), on a 100-year timescale. For comparison to units of carbon, each kg CO2e is equivalent to 0.273 kg C (0.273 = 1/3.67). See Box P.2, p. 12, in the Preface for more details.  
Recommended Citation for Chapter Marcotullio, P. J., L. Bruhwiler, S. Davis, J. Engel-Cox, J. Field, C. Gately, K. R. Gurney, D. M. Kammen, E. McGlynn, J. McMahon, W. R. Morrow, III, I. B. Ocko, and R. Torrie, 2018: Chapter 3: Energy systems. InSecond State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report [Cavallaro, N., G. Shrestha, R. Birdsey, M. A. Mayes, R. G. Najjar, S. C. Reed, P. Romero-Lankao, and Z. Zhu (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, pp. 110-188, https://doi.org/10.7930/SOCCR2.2018.Ch3.

RAEL Lunch, October 24, “Energy Development in Conflict Settings: Research Updates” Samira Siddique and Hilary Yu

This will be a special RAEL lunch to discuss and explore research directions in the emerging area of 'Energy Development in Conflict Settings', where Samira Siddique is working in the Rohingya context, and Hilary Yu is working in eastern Democratic Republic of the Congo.  More generally, a number of large-scale efforts are emerging on campus in this area, including a likely team-based research proposal and potential center. 20180718_123731 copy   Rohingya camp on the Bangladesh/Myanmar border. IMG_9314 Individual hut in the Rohingya camp on the Bangladesh/Myanmar border.   IMG_2518   Charcoal venders in eastern Congo on the road from Goma to Virunga National Park   Solar Power in Virunga   Solar array installed by Google and Give Solar at ranger camp, Rumangabo, Democratic Republic of the Congo.    

RAEL Lunch — November 14, Sara Mulhauser, “Do utility ownership structures impact energy storage diffusion rates?”

Mulhauser Sara is an architect who delved into distributed generation while developing fuel cell projects for Bloom Energy. She became interested in the energy industry in general, and specifically the regulatory and finance conditions that make markets more open to uptake of innovative technologies. While her focus is in energy, she is also interested in how other major infrastructure areas are similar and different with respect to technology uptake. Sara has a BA in Architecture from Berkeley.

The Future of Sustainable Energy (The Business Booster)

If you are base in Europe, hope to see you in Copenhagen at the Business Booster / Innovation Europe Event at the Bella Center. Screen Shot 2018-10-13 at 9.07.30 AM  Screen Shot 2018-10-13 at 9.07.23 AM For details, see: https://tbb.innoenergy.com

The Business Booster is an annual two-day international networking event that showcases 150+ sustainable energy technologies under one roof. TBB rotates among our European capitals – last year it was opened in Amsterdam by Maroš Šefčovič, the Vice-President for the Energy Union, followed by our key note, Dr. Prof. Bertrand Piccard, Chairman of the Solar Impulse Foundation. This year the event will take place from 17-18 October at the Bella Center, Copenhagen – Scandinavia’s largest exhibition centre, where we will be joined by over 700 attendees consisting of start-ups, energy industry representatives, financial communities, policy makers and regulators. Join us!

Screen Shot 2018-10-14 at 5.29.21 PM

Panel discussion: Energy access in conflict areas

August 21, 2018 | 6:30pm
PST
Sierra Club Oakland
Join Energy Access Forum and Sierra Club on Tuesday, August 21 for a stimulating panel discussion on Energy Access Work in Conflict Areas moderated by Jenean Smith, Director of International Programs at GRID Alternatives. Our expert panel includes:
  • Daniel Kammen, Professor of Energy at UC Berkeley
  • Tim Willink, Director of Tribal Program at GRID Alternatives
  • Alyssa Newman, Program Manager, Supply Chain Sustainability in Conflict Minerals at Google (invited)
The event will be hosted at the Sierra Club in downtown Oakland from 6:30 - 9:00 pm.   Tickets are just $20 and include drinks and light refreshments. Space is limited so get your tickets now!

Main Menu
RAEL Info

Energy & Resources Group
310 Barrows Hall
University of California
Berkeley, CA 94720-3050
Phone: (510) 642-1640
Fax: (510) 642-1085
Email: ergdeskb@berkeley.edu


Projects

  • Open the Main Menu
  • People at RAEL

  • Open the Main Menu