Search Results for 'energy storage'

Energy storage deployment and innovation for the clean energy transition

This publication website supports the new paper, in press at Nature Energy, titled: Energy storage deployment and innovation for the clean energy transition as a site where users can download the Excel versions of the data sets used i that paper, whose authors Noah Kittnera,b, Felix Lillb,c and Daniel M. Kammen*a,b,d a Energy and Resources Group, UC Berkeley, Berkeley, CA, USA b Renewable and Appropriate Energy Laboratory, UC Berkeley, Berkeley, CA, USA c Center for Digital Technology and Management, TU Munich, Munich, Germany d Goldman School of Public Policy, UC Berkeley, Berkeley, CA, USA give permission for open (but cited) use of these materials.

Forbes: China: Electric Vehicle-​​To-​​Grid Technology Could Solve Renewable Energy Storage Problem

http://www.forbes.com/sites/jeffmcmahon/2015/04/21/china-electric-vehicle-to-grid-tech-could-solve-renewable-energy-storage-problem/ China could use an expected boom in electric vehicles to stabilize a grid that depends heavily on wind and solar energy, officials from an influential Chinese government planning agency said Monday in Washington D.C. “In the future we think the electricity vehicle could be the big contribution for power systems’ stability, reliability,” said Wang Zhongying, director of the China National Renewable Energy Center and deputy director general of the Energy Research Institute at China’s National Development and Reform Commission. The Chinese do not see the cost of renewable energy as a significant obstacle to its widespread adoption, Wang told a lunchtime gathering at Resources for the Future, a non-partisan environmental research organization in the Capitol. “The biggest challenge for renewable energy development is not economic issues, it is technical issues. Variability. Variability is the biggest issue for us,” said Wang, who explained variability like so: “When we have wind we have electricity; when we have sun we have electricity. No wind and no sun, no electricity.” But if the Chinese deploy enough electric vehicles—which could mean up to five million new electric vehicles in Beijing alone—the array of distributed batteries could collect energy when the sun is shining or the wind is blowing and feed it back to the grid when the skies are dark and the air is still. Wang directed a study released this week, the “China 2050 High Renewable Energy Penetration Scenario and Roadmap Study,”  which plots a route for China to drastically reduce reliance on coal, derive 85 percent of electricity from renewables, and cut greenhouse gas emissions 60 percent by mid-century . The study gets there by relying on what has become known as Vehicle-to-Grid technology, which has emerged as almost a surprise side effect of inexpensive solar panels and clean-energy policies in places like California and Germany. The Chinese have been watching the same developments, the report reveals, as clean energy experts in the West like Daniel Kammen, who described unexpected effects of the solar-energy boom last week in an appearance at the University of Chicago.

“Massive amounts of solar power coming online in California, in Bangladesh, in Germany, in Italy, has meant the world has been turned on its head,” Kammen said.

“Now in places with the greenest energy policies, there is a huge peak in afternoon power on the grid, exactly where power used to be the most expensive and the dirtiest,” he said. “We actually want people to charge up now in the late afternoon. It sounds very chaotic, it’s not what we thought at all, but in fact it represents what low-cost solar is now bringing to many parts of the world.” Electricity consumers can store this abundant afternoon energy until supply goes down and demand goes up and then sell it back to the grid. And if they own electric vehicles, they needn’t buy extra equipment to do so. “You can put a big battery in the basement of your home or business, but you can also have your electric vehicle, with its mobile storage system that you drive around and use as your car. They’re called Nissan Leafs, they’re called Chevy Volts, they’re called Teslas, they’re called Priuses, they have a variety of names. And now you can sell power back to the grid.” An electric car with a range of 250 km can store 40 kWh of electricity, Wang said. Five million of those cars could stabilize Beijing’s grid to counteract variations in wind and sun, he said, and the number of automobiles in Beijing is expected to blossom from six million now to 10 million by 2030. If the range of electric cars doubles to 500 km, he added, they will store enough electricity that only two million will be needed. The cost of electric vehicles—about $40,000 in China, according to Wang—remains a hurdle, but China may slash the price by subsidizing vehicle batteries. China’s High Renewable Energy Roadmap resembles several U.S. Dept. of Energy studies that have plotted the route for the U.S. to reduce greenhouse gas emissions more than 80 percent by 2050. The U.S. studies anticipate that solar and wind will provide half of U.S. power needs by 2050, using pumped hydro and compressed-air storage systems to offset variability. Bulk battery systems were deemed too expensive to be viable, said Samuel Baldwin, chief science officer in DOE’s Office of Energy Efficiency and Renewable Energy, but the U.S. studies did not anticipate the “distributed storage” option offered by electric vehicles. “I expect that battery storage like the Chinese study, with electric vehicles or stationary storage, is going to play a more important role,” Baldwin said.

It remains uncertain, however, how important a role it will play in China. The country’s first priority is economic development, said Li Junfeng, director general of China’s National Center for Climate Change Strategy and International Cooperation, also an arm of the National Development and Reform Commission.

By 2049, the centennial year of the People’s Republic of China, the Chinese want to achieve a standard of living comparable to the most developed countries.

“China wants to be among the developed countries by 2050,” Li said. “That’s the first priority.”

China’s High Renewable Energy Roadmap is a “visionary scenario,” according to Joanna Lewis, an associate professor of science, technology and international affairs at Georgetown University. But it remains to be seen whether China’s Politburu shares the vision of its National Development and Reform Commission.

“We hope our study can influence the government’s 13th five-year plan and 2050 energy strategy,” said Wang. “That’s very important.”

Profitably Powering the Clean Energy Economy

  rsz_img_9702-696x464 Dr. Daniel M. Kammen, Professor of Energy at the University of California, Berkeley, Director of Renewable and Appropriate Energy Laboratory (RAEL) and Chair in the Energy and Resources Group (ERG) and doctoral student Samira Siddiqui, also of the Subir and Malini Chowdhury Center for Bangladesh Studies at UC Berkeley came to North South University on the 18th of February, 2018 to talk on “Profitably Powering the Clean Energy Economy”. This event was organized by the Office of External Affairs and facilitated by NSU HR Club. He informed the audience members on Bangladesh’s changing energy landscape—electricity for all by 2021, reduction of greenhouse gas emissions and insufficient power supply of the rapidly growing demand for electricity. Dr. Kammen also showcased Bangladesh’s remarkable success in Solar Home System (SHS). When most countries were skeptic of solar energy system, Bangladesh became one of the pioneers to start this new program. He informed that Bangladesh, just starting from 2003, has the largest off-the-grid program in the world. The 4.5 million SHS installed as of July 2017 are generating over 200MW of electricity. To illustrate the current situation of the energy/fuel system, Dr. Kammen used the analogy of the horse race where energies from solar and wind are going neck and neck and other forms of energy such as nuclear, water, coal are lagging behind. Then he informed that, the concept of energy storage was not even an option 15 years ago. It was when China started mass producing solar panels that the prices dropped significantly and people started relying on solar energy. Like a dark horse, SHS is sweeping in and winning the race for clean energy economy. Dr. Kammen stressed that Bangladesh has an ample amount of clean energy resources from which a profitable and empowering economy can be built. Dr. Kammen is an expert in his field having authored/co-authored 12 books, written more than 300 peer-reviewed journal publications and contributing to Nobel prizewinning climate work with the professors at University of California, Berkeley. For his valuable words and time, Dr. Kammen was presented with a bouquet of flowers by the Director of External Affairs, Dr. Katherine Li and a crest by the Vice-Chancellor, Prof. Atiqul Islam as tokens of appreciation from NSU. Original link: http://qswownews.com/profitably-powering-the-clean-energy-economy/  

MIT Energy Initiative: Innovating for the clean energy economy

3 Questions: Innovating for the clean energy economy

Daniel Kammen of the University of California at Berkeley discusses current efforts in clean energy innovation and implementation, and what's coming next.

For a video of the talk and Q & A, click here.
Ivy Pepin | MIT Energy Initiative March 28, 2018 Screen Shot 2018-03-28 at 3.49.47 PM Daniel Kammen is a professor of energy at the University of California at Berkeley, with parallel appointments in the Energy and Resources Group (which he chairs), the Goldman School of Public Policy, and the Department of Nuclear Science and Engineering. Recently, he gave a talk at MIT examining the current state of clean energy innovation and implementation, both in the U.S. and internationally. Using a combination of analytical and empirical approaches, he discussed the strengths and weaknesses of clean energy efforts on the household, city, and regional levels. The MIT Energy Initiative (MITEI) followed up with him on these topics. Q: Your team has built energy transition models for several countries, including Chile, Nicaragua, China, and India. Can you describe how these models work and how they can inform global climate negotiations like the Paris Accords? A: My team, the Renewable and Appropriate Energy Laboratory has worked with three governments to build open-source models of the current state of their energy systems and possible opportunities for improvement. This model, SWITCH , is an exceptionally high-resolution platform for examining the costs, reliability, and carbon emissions of energy systems as small as Nicaragua’s and as large as China’s. The exciting recent developments in the cost and performance improvements of solar, wind, energy storage, and electric vehicles permit the planning of dramatically decarbonized systems that have a wide range of ancillary benefits: increased reliability, improved air quality, and monetizing energy efficiency, to name just a few. With the Paris Climate Accords placing 80 percent or greater decarbonization targets on all nations’ agendas (sadly, except for the U.S. federal government), the need for an "honest broker" for the costs and operational issues around power systems is key. Q: At the end of your talk, you mentioned a carbon footprint calculator that you helped create. How much do individual behaviors matter in addressing climate change? A: The carbon footprint, or CoolClimate project, directed by Dr. Chris Jones in my RAEL lab, is a visualization and behavioral economics tool that can be used to highlight the impacts of individual decisions at the household, school, and city level. We have used it to support city-city competitions for “California’s coolest city,” to explore the relative impacts of lifetime choices (buying an electric vehicle versus or along with changes of diet), and more. Q: You touched on the topic of the “high ambition coalition,” a 2015 United Nations Climate Change Conference goal of keeping warming under 1.5 degrees Celsius. Can you expand on this movement and the carbon negative strategies it would require? A: As we look at paths to a sustainable global energy system, efforts to limit warming to 1.5 degrees Celsius will require not only zeroing out industrial and agricultural emissions, but also removing carbon from the atmosphere. This demands increasing natural carbon sinks by preserving or expanding forests, sustaining ocean systems, and making agriculture climate- and water-smart. One pathway, biomass energy with carbon capture and sequestration, has both supporters and detractors. It involves growing biomass, using it for energy, and then sequestering the emissions. This talk was one in a series of MITEI seminars supported by IHS Markit.

Full video of presentation, “Innovating for the clean energy economy” @ MIT Energy Initiative

For the video of the talk: click here. Talk delivered February 19, 2018 Daniel Kammen is a professor of energy at the University of California, Berkeley, with parallel appointments in the Energy and Resources Group (which he chairs), the Goldman School of Public Policy, and the Department of Nuclear Science and Engineering. Recently, he gave a talk at MITEI examining the current state of clean energy innovation and implementation, both in the U.S. and internationally. Using a combination of analytical and empirical approaches, he discussed the strengths and weaknesses of clean energy efforts on the household, city, and regional levels. Q: Your team has built energy transition models for several countries, including Chile, Nicaragua, China, and India. Can you describe how these models work and how they can inform global climate negotiations like the Paris Accords? A: My laboratory has worked with three governments to build open-source models of the current state of their energy systems and possible opportunities for improvement. This model, SWITCH, is an exceptionally high-resolution platform for examining the costs, reliability, and carbon emissions of energy systems as small as Nicaragua’s and as large as China’s. The exciting recent developments in the cost and performance improvements of solar, wind, energy storage, and electric vehicles permit the planning of dramatically decarbonized systems that have a wide range of ancillary benefits: increased reliability, improved air quality, and monetizing energy efficiency, to name just a few. With the Paris Climate Accords placing 80% or greater decarbonization targets on all nations’ agendas (sadly, except for the U.S. federal government), the need for an ‘honest broker’ for the costs and operational issues around power systems is key. Q: At the end of your talk, you mentioned a carbon footprint calculator that you helped create. How much do individual behaviors matter in addressing climate change? A: The carbon footprint, or CoolClimate project, is a visualization and behavioral economics tool that can be used to highlight the impacts of individual decisions at the household, school, and city level. We have used it to support city-city competitions for “California’s coolest city,” to explore the relative impacts of lifetime choices (buying an electric vehicle versus or along with changes of diet), and more. Q: You touched on the topic of the “high ambition coalition,” a COP21 goal of keeping warming under 1.5 degrees Celsius. Can you expand on this movement and the carbon negative strategies it would require? A: As we look at paths to a sustainable global energy system, efforts to limit warming to 1.5 degrees Celsius will require not only zeroing out industrial and agricultural emissions, but also removing carbon from the atmosphere. This demands increasing natural carbon sinks by preserving or expanding forests, sustaining ocean systems, and making agriculture climate- and water-smart. One pathway, biomass energy with carbon capture and sequestration, has both supporters and detractors. It involves growing biomass, using it for energy, and then sequestering the emissions.  

EU must not burn the world’s forests for ‘renewable’ energy

A flaw in Europe’s clean energy plan allows fuel from felled trees to qualify as renewable energy when in fact this would accelerate climate change and devastate forests   The European Union is moving to enact a directive to double Europe’s current renewable energy by 2030. This is admirable, but a critical flaw in the present version would accelerate climate change, allowing countries, power plants and factories to claim that cutting down trees and burning them for energy fully qualifies as renewable energy. Even a small part of Europe’s energy requires a large quantity of trees and to avoid profound harm to the climate and forests worldwide the European council and parliament must fix this flaw. European producers of wood products have for decades generated electricity and heat as beneficial by-products, using wood wastes and limited forest residues. Most of this material would decompose and release carbon dioxide in a few years anyway, so using them to displace fossil fuels can reduce the carbon dioxide added to the atmosphere in a few years too.   Unfortunately, the directive moving through parliament would go beyond wastes and residues and credit countries and companies for cutting down additional trees simply to burn them for energy. To do so has fundamentally different consequences because the carbon released into the air would otherwise stay locked up in forests. The reasoning seems to be that so long as forests re-grow, they will eventually reabsorb the carbon released. Yet even then, the net effect – as many studies have shown – will typically be to increase global warming for decades to centuries, even when wood replaces coal, oil or natural gas.   The reasons begin with the inherent inefficiencies in harvesting wood. Typically, around one third or more of each tree is contained in roots and small branches that are properly left in the forest to protect soils, and most of which decompose, emitting carbon. The wood that is burned releases even more carbon than coal per unit of energy generated, and burns at a lower temperature, producing less electricity – turning wood into compressed pellets increases efficiency but uses energy and creates large additional emissions. A power plant burning wood chips will typically emit one and a half times the carbon dioxide of a plant burning coal and at least three times the carbon dioxide emitted by a power plant burning natural gas.   Although regrowing trees absorb carbon, trees grow slowly, and for some years a regrowing forest absorbs less carbon than if the forest were left unharvested. Eventually, the new forest grows faster and the carbon it absorbs, plus the reduction in fossil fuels, can pay back the “carbon debt”, but that takes decades to centuries, depending on the forest type and use. We conservatively estimate that using deliberately harvested wood instead of fossil fuels will release at least twice as much carbon dioxide to the air by 2050 per kilowatt hour. Doing so turns a potential reduction in emissions from solar or wind into a large increase. Time matters. Placing an additional carbon load in the atmosphere for decades means permanent damage due to more rapid melting of permafrost and glaciers, and more packing of heat and acidity into the world’s oceans. At a critical moment when countries need to be “buying time” against climate change, this approach amounts to selling the world’s limited time to combat climate change under mistaken claims of improvement.   The effect on the world’s forests, carbon and biodiversity is likely to be large because even though Europe is a large producer of wood, its harvest could only supply about 6% of its primary energy. For more than a decade, the increased use of biomass has been supplying roughly half of Europe’s increase in renewable energy. To supply even one third of the additional renewable energy likely required by 2030, Europe would need to burn an amount of wood greater than its total harvest today. This would turn a likely 6% decrease in energy emissions by 2050 under the directive through solar and wind into at least a 6% increase. Europe’s own demand for wood would degrade forests around the world, but if other countries follow Europe’s example, the impacts would be even more dangerous. Instead of encouraging Indonesia and Brazil to preserve their tropical forests – Europe’s present position – the message of this directive is “cut your forests so long as someone burns them for energy”. Once countries are invested in such efforts, fixing the error may become impossible. To supply just an additional 3% of global energy with wood, the world needs to double its commercial wood harvests at great costs to carbon and wildlife.   Neither a requirement that forests be managed sustainably nor any other “safeguards” in the various working drafts would stop this. For example, the directive would ban wood if harvests undermined “the long-term productivity capacity of the forest”. Although that sounds good, preserving the capacity of trees to grow back still leaves more carbon in the air for at least decades. Restricting wood harvests to countries with net growing forests – another idea – would still take carbon that forests would otherwise add to their storage and instead put it in the air without meaningful global limits.   The solution is to restrict eligible forest biomass to its traditional sources of residues and waste. Legislators will likely be able to vote on such an amendment in the parliament’s plenary. By 1850, the use of wood for bioenergy helped drive the near deforestation of western Europe even at a time when Europeans consumed relatively little energy. Although coal helped to save the forests of Europe, the solution is not to go back to burning forests. As scientists, we collectively have played key roles in the IPCC, in advising European governments, and in forest and climate research. We encourage European legislators and other policymakers to amend the present directive because the fate of much of the world’s forests is literally at stake.   Prof John Beddington, Oxford Martin School, former chief scientist to the UK government; Prof Steven Berry, Yale University; Prof Ken Caldeira*, Stanford University and Carnegie Institution for Science; Wolfgang Cramer*, research director (CNRS), Mediterranean Institute of marine and terrestrial biodiversity and ecology; Felix Creutzig*, chair Sustainability Economics of Human Settlement at Berlin Technical University and leader at the Mercator Research Institute on Global Commons and Climate Change; Prof Dan Kammen*, University of California at Berkeley, director Renewable and Appropriate Energy Laboratory; Prof Eric Lambin, Université catholique de Louvain and Stanford University; Prof Simon Levin, Princeton University, recipient US National Medal of Science; Prof Wolfgang Lucht*, Humboldt University and co-chair of Potsdam Institute for Climate Research; Prof Georgina Mace FRS*, University College London; Prof William Moomaw*, Tufts University; Prof Peter Raven, director emeritus Missouri Botanical Society, recipient US National Medal of Science; Tim Searchinger, research scholar, Princeton University and senior fellow, World Resources Institute; Prof Nils Christian Stenseth, University of Oslo, past president of the Norwegian Academy of Science and Letters; Prof Jean Pascal van Ypersele, Université Catholique de Louvain, former IPCC vice-chair (2008-2015).   Those marked * have been lead authors on IPCC reports.   For more on Professor Kammen and the Renewable and Appropriate Energy Laboratory's work on biomass, click here and search 'biomass'

In The Guardian: EU must not burn the world’s forests for ‘renewable’ energy

December 14, 2017 - The Guardian

A flaw in Europe’s clean energy plan allows fuel from felled trees to qualify as renewable energy when in fact this would accelerate climate change and devastate forests The European Union is moving to enact a directive to double Europe’s current renewable energy by 2030. This is admirable, but a critical flaw in the present version would accelerate climate change, allowing countries, power plants and factories to claim that cutting down trees and burning them for energy fully qualifies as renewable energy. Even a small part of Europe’s energy requires a large quantity of trees and to avoid profound harm to the climate and forests worldwide the European council and parliament must fix this flaw. European producers of wood products have for decades generated electricity and heat as beneficial by-products, using wood wastes and limited forest residues. Most of this material would decompose and release carbon dioxide in a few years anyway, so using them to displace fossil fuels can reduce the carbon dioxide added to the atmosphere in a few years too. Unfortunately, the directive moving through parliament would go beyond wastes and residues and credit countries and companies for cutting down additional trees simply to burn them for energy. To do so has fundamentally different consequences because the carbon released into the air would otherwise stay locked up in forests. The reasoning seems to be that so long as forests re-grow, they will eventually reabsorb the carbon released. Yet even then, the net effect – as many studies have shown – will typically be to increase global warming for decades to centuries, even when wood replaces coal, oil or natural gas. The reasons begin with the inherent inefficiencies in harvesting wood. Typically, around one third or more of each tree is contained in roots and small branches that are properly left in the forest to protect soils, and most of which decompose, emitting carbon. The wood that is burned releases even more carbon than coal per unit of energy generated, and burns at a lower temperature, producing less electricity – turning wood into compressed pellets increases efficiency but uses energy and creates large additional emissions. A power plant burning wood chips will typically emit one and a half times the carbon dioxide of a plant burning coal and at least three times the carbon dioxide emitted by a power plant burning natural gas. Although regrowing trees absorb carbon, trees grow slowly, and for some years a regrowing forest absorbs less carbon than if the forest were left unharvested. Eventually, the new forest grows faster and the carbon it absorbs, plus the reduction in fossil fuels, can pay back the “carbon debt”, but that takes decades to centuries, depending on the forest type and use. We conservatively estimate that using deliberately harvested wood instead of fossil fuels will release at least twice as much carbon dioxide to the air by 2050 per kilowatt hour. Doing so turns a potential reduction in emissions from solar or wind into a large increase. Time matters. Placing an additional carbon load in the atmosphere for decades means permanent damage due to more rapid melting of permafrost and glaciers, and more packing of heat and acidity into the world’s oceans. At a critical moment when countries need to be “buying time” against climate change, this approach amounts to selling the world’s limited time to combat climate change under mistaken claims of improvement. The effect on the world’s forests, carbon and biodiversity is likely to be large because even though Europe is a large producer of wood, its harvest could only supply about 6% of its primary energy. For more than a decade, the increased use of biomass has been supplying roughly half of Europe’s increase in renewable energy. To supply even one third of the additional renewable energy likely required by 2030, Europe would need to burn an amount of wood greater than its total harvest today. This would turn a likely 6% decrease in energy emissions by 2050 under the directive through solar and wind into at least a 6% increase. Europe’s own demand for wood would degrade forests around the world, but if other countries follow Europe’s example, the impacts would be even more dangerous. Instead of encouraging Indonesia and Brazil to preserve their tropical forests – Europe’s present position – the message of this directive is “cut your forests so long as someone burns them for energy”. Once countries are invested in such efforts, fixing the error may become impossible. To supply just an additional 3% of global energy with wood, the world needs to double its commercial wood harvests at great costs to carbon and wildlife. Neither a requirement that forests be managed sustainably nor any other “safeguards” in the various working drafts would stop this. For example, the directive would ban wood if harvests undermined “the long-term productivity capacity of the forest”. Although that sounds good, preserving the capacity of trees to grow back still leaves more carbon in the air for at least decades. Restricting wood harvests to countries with net growing forests – another idea – would still take carbon that forests would otherwise add to their storage and instead put it in the air without meaningful global limits. The solution is to restrict eligible forest biomass to its traditional sources of residues and waste. Legislators will likely be able to vote on such an amendment in the parliament’s plenary. By 1850, the use of wood for bioenergy helped drive the near deforestation of western Europe even at a time when Europeans consumed relatively little energy. Although coal helped to save the forests of Europe, the solution is not to go back to burning forests. As scientists, we collectively have played key roles in the IPCC, in advising European governments, and in forest and climate research. We encourage European legislators and other policymakers to amend the present directive because the fate of much of the world’s forests is literally at stake. Prof John Beddington, Oxford Martin School, former chief scientist to the UK government; Prof Steven Berry, Yale University; Prof Ken Caldeira*, Stanford University and Carnegie Institution for Science; Wolfgang Cramer*, research director (CNRS), Mediterranean Institute of marine and terrestrial biodiversity and ecology; Felix Creutzig*, chair Sustainability Economics of Human Settlement atBerlin Technical University and leader at the Mercator Research Institute on Global Commons and Climate Change; Prof Dan Kammen*, University of California at Berkeley, director Renewable and Appropriate Energy Laboratory; Prof Eric Lambin Université catholique de Louvain and Stanford University; Prof Simon Levin, Princeton University, recipient US National Medal of Science; Prof Wolfgang Lucht*, Humboldt University and co-chair of Potsdam Institute for Climate Research; Prof Georgina Mace FRS*, University College London; Prof William Moomaw*, Tufts University; Prof Peter Raven, director emeritus Missouri Botanical Society, recipient US National Medal of Science; Tim Searchinger, research scholar, Princeton University and senior fellow, World Resources Institute; Prof Nils Christian Stenseth, University of Oslo, past president of the Norwegian Academy of Science and Letters; Prof Jean Pascal van Ypersele, Université Catholique de Louvain, former IPCC vice-chair (2008-2015).   Those marked * have been lead authors on IPCC reports.   For more on Professor Kammen and the Renewable and Appropriate Energy Laboratory's work on biomass, click here and search 'biomass'   _____________________________________________________   If you would like to sign on to this open letter o amend a Renewable Energy Directive under debate so that the directive does not encourage the burning of wood harvested just for that purpose.    The letter closely tracks the following editorial recently published in the Guardian by several prominent scientists and economists. https://www.theguardian.com/environment/2017/dec/14/eu-must-not-burn-the-worlds-forests-for-renewable-energy  
Europe is currently considering a renewable energy directive that would raise the requirements to use renewable energy from a level of roughly 17% of final energy demand today to a level of 27-35% by 2030.   While this target is laudable, the directive counts as fully qualifying renewable energy the use of wood harvested for that purpose, and not merely residues and waste. The previous renewable energy directive has already led European power plants, factoring and heating installations to shift to wood, importing much of that in the form of wood pellets from the U.S. and Canada. Many academic papers have calculated that any wood harvested for burning, even if trees are allowed to regrow, would result in increases in greenhouse gas emissions for decades to centuries even compared to the use of fossil fuels.
The major consequences of the new directive result from the sheer scope of the potential wood requirements. Although biomass has been supplying around half of Europe's growth in renewable energy (from 11% in 2007 to  around 17% today), if wood biomass supplied even one third of the future required growth by 2030, the directive would require an amount of wood greater than all annual European wood harvest, which also roughly equals all annual U.S. and Canadian wood harvests combined.
The directive will be voted on probably the third week in January in the European Parliament, and there will be an amendment to restrict forest biomass to residues and wastes. There have been previous letters by 100 or more scientists on this issue to European leaders, and we are hoping for more this time. If you are a scientists and would like to sign on, please also consider encouraging other scientists you know as well.
If you would like to sign on, please send an email either to Greg Davies or Zuzana Burialova at Princeton University at gd3@princeton.edu or z.burivalova@princeton.edu, who will be keeping track.
The final sign-on date will be January 5, 2018.
THE TEXT OF THE LETTER:
  SCIENTIST EU FOREST BIOMASS SIGN-ON LETTER   To Members of the European Parliament, As the European Parliament commendably moves to expand the renewable energy directive, we strongly urge members of Parliament to amend the present directive to avoid expansive harm to the world’s forests and the acceleration of climate change. The flaw in the directive lies in provisions that would let countries, power plants and factories claim credit toward renewable energy targets for deliberately cutting down trees to burn them for energy. The solution should be to restrict the forest biomass eligible under the directive to residues and wastes. For decades, European producers of paper and timber products have generated electricity and heat as beneficial by-products using wood wastes and limited forest residues. Since most of these waste materials would decompose and release carbon dioxide within a few years, using them to displace fossil fuels can reduce net carbon dioxide emissions to the atmosphere in a few years as well. By contrast, cutting down trees for bioenergy releases carbon that would otherwise stay locked up in forests, and diverting wood otherwise used for wood products will cause more cutting elsewhere to replace them. Even if forests are allowed to regrow, using wood deliberately harvested for burning will increase carbon in the atmosphere and warming for decades to centuries – as many studies have shown – even when wood replaces coal, oil or natural gas. The reasons are fundamental and occur regardless of whether forest management is “sustainable.” Burning wood is inefficient and therefore emits far more carbon than burning fossil fuels for each kilowatt hour of electricity produced. Harvesting wood also properly leaves some biomass behind to protect soils, such as roots and small branches, which decompose and emit carbon. The result is a large “carbon debt.” Re-growing trees and displacement of fossil fuels may eventually pay off this “carbon debt’ but only over long periods. Overall, allowing the harvest and burning of wood under the directive will transform large reductions otherwise achieved through solar and wind into large increases in carbon in the atmosphere by 2050. Time matters. Placing an additional carbon load in the atmosphere for decades means permanent damages due to more rapid melting of permafrost and glaciers, and more packing of heat and acidity into the world’s oceans. At a critical moment when countries need to be “buying time” against climate change, this approach amounts to “selling” the world’s limited time to combat climate change. The adverse implications not just for carbon but for global forests and biodiversity are also large. More than 100% of Europe’s annual harvest of wood would be needed to supply just one third of the expanded renewable energy directive. Because demand for wood and paper will remain, the result will be increased degradation of forests around the world. The example Europe would set for other countries would be even more dangerous. Europe has been properly encouraging countries such as Indonesia and Brazil to protect their forests, but the message of this directive is “cut your forests so long as someone burns them for energy.” Once countries invest in such efforts, fixing the error may become impossible. If the world moves to supply just an additional 3% of global energy with wood, it must double its commercial cuttings of the world’s forests. By 1850, the use of wood for bioenergy helped drive the near deforestation of western Europe even when Europeans consumed far less energy than they do today. Although coal helped to save the forests of Europe, the solution to replacing coal is not to go back to burning forests, but instead to replace fossil fuels with low carbon sources, such as solar and wind. We urge European legislators to amend the present directive to restrict eligible forest biomass to appropriately defined residues and wastes because the fate of much of the world’s forests and the climate are literally at stake. Initial signers: John Beddington, Professor, Oxford Martin School, former Chief Scientist to the government of the United Kingdom Steven Berry, Professor, Yale University, former Chairman, Department of Economics, fellow American Academy of Arts and Sciences, winner of the Frisch Medal of the Econometric Society. Ken Caldeira – Professor, Stanford University and Carnegie Institution for Science, Coordinating lead author or lead author of multiple IPCC reports. Wolfgang Cramer, Research Director, CNRS, Mediterranean Institute of marine and terrestrial Biodiversity and Ecology, Aix-en-Provence, member Académie d'Agriculture de France France, Coordinating lead author and lead author of multiple IPCC reports, Felix Creutzig, Chair Sustainability Economics of Human Settlement at Technische Universität Berlin, Leader, leader Mercator Research Institute on Global Commons and Climate Change, Lead author of IPCC V Assessment Report and coordinator of appendix on bioenergy. Phil Duffy, President, Woods Hole Research Center, former Senior Advisor White Office of Science and Technology Policy, Contributing author of multiple IPCC reports Dan Kammen – Professor University of California at Berkeley, Director Renewable and Appropriate Energy Laboratory, Coordinating lead author or lead author of multiple IPCC reports. Eric Lambin – Professor Université catholique de Louvain and Stanford University, member European and U.S. Academies of Science, 2014 laureate of Volvo Environment Prize Simon Levin – Professor Princeton University, Recipient, U.S. National Medal of Science, member U.S. National Academy of Sciences Wolfgang Lucht – Professor Humboldt University and Co-Chair of Potsdam Institute for Climate Research, lead author of multiple IPCC reports Georgina Mace FRS, Professor, University College London, Lead author IPCC report and Winner International Cosmos Prize William Moomaw – Emeritus Professor, Tufts University, Coordinating lead author or lead author of multiple IPCC reports Peter Raven – Director Emeritus Missouri Botanical Society, Recipient U.S. National Medal of Science and former President of American Association for Advancement of Science Tim Searchinger - Research Scholar, Princeton University and Senior Fellow, World Resources Institute Nils Chr. Stenseth, Professor of Ecology and Evolution, University of Oslo, Past president of The Norwegian Academy of Science and Letters, member Royal Norwegian Society of Sciences and Letters, The National Academy of Science (Washington), French Academy of Sciences, and Academia Europaea Jean Pascal van Ypersele, Professor, Université catholique de Louvain, Former IPCC Vice-chair (2008-2015), member of the Royal Academy of Belgium, lead author or review editor of multiple IPCC reports
 

Main Menu
RAEL Info

Energy & Resources Group
310 Barrows Hall
University of California
Berkeley, CA 94720-3050
Phone: (510) 642-1640
Fax: (510) 642-1085
Email: ergdeskb@berkeley.edu


Projects

  • Open the Main Menu
  • People at RAEL

  • Open the Main Menu