Search Results for 'energy storage'

RAEL Lunch — November 14, Sara Mulhauser, “Do utility ownership structures impact energy storage diffusion rates?”

Mulhauser Sara is an architect who delved into distributed generation while developing fuel cell projects for Bloom Energy. She became interested in the energy industry in general, and specifically the regulatory and finance conditions that make markets more open to uptake of innovative technologies. While her focus is in energy, she is also interested in how other major infrastructure areas are similar and different with respect to technology uptake. Sara has a BA in Architecture from Berkeley.

Energy storage deployment and innovation for the clean energy transition

This publication website supports the new paper, in press at Nature Energy, titled: Energy storage deployment and innovation for the clean energy transition as a site where users can download the Excel versions of the data sets used i that paper, whose authors Noah Kittnera,b, Felix Lillb,c and Daniel M. Kammen*a,b,d a Energy and Resources Group, UC Berkeley, Berkeley, CA, USA b Renewable and Appropriate Energy Laboratory, UC Berkeley, Berkeley, CA, USA c Center for Digital Technology and Management, TU Munich, Munich, Germany d Goldman School of Public Policy, UC Berkeley, Berkeley, CA, USA give permission for open (but cited) use of these materials.

Forbes: China: Electric Vehicle-​​To-​​Grid Technology Could Solve Renewable Energy Storage Problem

http://www.forbes.com/sites/jeffmcmahon/2015/04/21/china-electric-vehicle-to-grid-tech-could-solve-renewable-energy-storage-problem/ China could use an expected boom in electric vehicles to stabilize a grid that depends heavily on wind and solar energy, officials from an influential Chinese government planning agency said Monday in Washington D.C. “In the future we think the electricity vehicle could be the big contribution for power systems’ stability, reliability,” said Wang Zhongying, director of the China National Renewable Energy Center and deputy director general of the Energy Research Institute at China’s National Development and Reform Commission. The Chinese do not see the cost of renewable energy as a significant obstacle to its widespread adoption, Wang told a lunchtime gathering at Resources for the Future, a non-partisan environmental research organization in the Capitol. “The biggest challenge for renewable energy development is not economic issues, it is technical issues. Variability. Variability is the biggest issue for us,” said Wang, who explained variability like so: “When we have wind we have electricity; when we have sun we have electricity. No wind and no sun, no electricity.” But if the Chinese deploy enough electric vehicles—which could mean up to five million new electric vehicles in Beijing alone—the array of distributed batteries could collect energy when the sun is shining or the wind is blowing and feed it back to the grid when the skies are dark and the air is still. Wang directed a study released this week, the “China 2050 High Renewable Energy Penetration Scenario and Roadmap Study,”  which plots a route for China to drastically reduce reliance on coal, derive 85 percent of electricity from renewables, and cut greenhouse gas emissions 60 percent by mid-century . The study gets there by relying on what has become known as Vehicle-to-Grid technology, which has emerged as almost a surprise side effect of inexpensive solar panels and clean-energy policies in places like California and Germany. The Chinese have been watching the same developments, the report reveals, as clean energy experts in the West like Daniel Kammen, who described unexpected effects of the solar-energy boom last week in an appearance at the University of Chicago.

“Massive amounts of solar power coming online in California, in Bangladesh, in Germany, in Italy, has meant the world has been turned on its head,” Kammen said.

“Now in places with the greenest energy policies, there is a huge peak in afternoon power on the grid, exactly where power used to be the most expensive and the dirtiest,” he said. “We actually want people to charge up now in the late afternoon. It sounds very chaotic, it’s not what we thought at all, but in fact it represents what low-cost solar is now bringing to many parts of the world.” Electricity consumers can store this abundant afternoon energy until supply goes down and demand goes up and then sell it back to the grid. And if they own electric vehicles, they needn’t buy extra equipment to do so. “You can put a big battery in the basement of your home or business, but you can also have your electric vehicle, with its mobile storage system that you drive around and use as your car. They’re called Nissan Leafs, they’re called Chevy Volts, they’re called Teslas, they’re called Priuses, they have a variety of names. And now you can sell power back to the grid.” An electric car with a range of 250 km can store 40 kWh of electricity, Wang said. Five million of those cars could stabilize Beijing’s grid to counteract variations in wind and sun, he said, and the number of automobiles in Beijing is expected to blossom from six million now to 10 million by 2030. If the range of electric cars doubles to 500 km, he added, they will store enough electricity that only two million will be needed. The cost of electric vehicles—about $40,000 in China, according to Wang—remains a hurdle, but China may slash the price by subsidizing vehicle batteries. China’s High Renewable Energy Roadmap resembles several U.S. Dept. of Energy studies that have plotted the route for the U.S. to reduce greenhouse gas emissions more than 80 percent by 2050. The U.S. studies anticipate that solar and wind will provide half of U.S. power needs by 2050, using pumped hydro and compressed-air storage systems to offset variability. Bulk battery systems were deemed too expensive to be viable, said Samuel Baldwin, chief science officer in DOE’s Office of Energy Efficiency and Renewable Energy, but the U.S. studies did not anticipate the “distributed storage” option offered by electric vehicles. “I expect that battery storage like the Chinese study, with electric vehicles or stationary storage, is going to play a more important role,” Baldwin said.

It remains uncertain, however, how important a role it will play in China. The country’s first priority is economic development, said Li Junfeng, director general of China’s National Center for Climate Change Strategy and International Cooperation, also an arm of the National Development and Reform Commission.

By 2049, the centennial year of the People’s Republic of China, the Chinese want to achieve a standard of living comparable to the most developed countries.

“China wants to be among the developed countries by 2050,” Li said. “That’s the first priority.”

China’s High Renewable Energy Roadmap is a “visionary scenario,” according to Joanna Lewis, an associate professor of science, technology and international affairs at Georgetown University. But it remains to be seen whether China’s Politburu shares the vision of its National Development and Reform Commission.

“We hope our study can influence the government’s 13th five-year plan and 2050 energy strategy,” said Wang. “That’s very important.”

Princeton Environmental Institute Seminar, “An Energy Plan the Earth Can Live With”

Daniel Kammen, Professor of Energy at the University of California, Berkeley, will present, "An Energy Plan the Earth Can Live With," at 4 p.m. Monday, May 7, in Guyot Hall, Room 10. Screen Shot 2018-05-04 at 5.59.00 PM Kammen is the eighth and final speaker in the Challenges in Environmental Sciences Seminar (CHESS) Series organized by PEI in cooperation with campus partners. Kammen will look in overview at clean-energy projects at scales from off-grid solar-energy systems to mini-grids and decarbonization efforts in the United States, China, Nicaragua, Kenya and Southeast Asia. He will review a number of specific areas of energy-system innovation, including in energy storage and information management systems for mini-grid operation. He will examine how analytic and practical field-based efforts both decarbonize communities across scales and establish frameworks to meet the Paris climate accord. Kammen was appointed the first Environment and Climate Partnership for the Americas Fellow by Secretary of State Hilary Clinton in April 2010. Kammen has served as a contributing or coordinating lead author for the Intergovernmental Panel on Climate Change since 1999.  Th IPCC shared the 2007 Nobel Peace Prize. From 2010-2011, he was the World Bank Group's chief technical specialist for renewable energy and energy efficiency, in which he helped enhance renewable-energy and energy-efficiency activities and expand the institution's role in promoting cleaner, more sustainable energy. Before joining UC-Berkeley, Kammen was an assistant professor of public and international affairs at Princeton, as well as director of the Program in Science, Technology and Environmental Policy (STEP) and PEI associated faculty. He received his doctorate in physics from Harvard University in 1988.

Profitably Powering the Clean Energy Economy

  rsz_img_9702-696x464 Dr. Daniel M. Kammen, Professor of Energy at the University of California, Berkeley, Director of Renewable and Appropriate Energy Laboratory (RAEL) and Chair in the Energy and Resources Group (ERG) and doctoral student Samira Siddiqui, also of the Subir and Malini Chowdhury Center for Bangladesh Studies at UC Berkeley came to North South University on the 18th of February, 2018 to talk on “Profitably Powering the Clean Energy Economy”. This event was organized by the Office of External Affairs and facilitated by NSU HR Club. He informed the audience members on Bangladesh’s changing energy landscape—electricity for all by 2021, reduction of greenhouse gas emissions and insufficient power supply of the rapidly growing demand for electricity. Dr. Kammen also showcased Bangladesh’s remarkable success in Solar Home System (SHS). When most countries were skeptic of solar energy system, Bangladesh became one of the pioneers to start this new program. He informed that Bangladesh, just starting from 2003, has the largest off-the-grid program in the world. The 4.5 million SHS installed as of July 2017 are generating over 200MW of electricity. To illustrate the current situation of the energy/fuel system, Dr. Kammen used the analogy of the horse race where energies from solar and wind are going neck and neck and other forms of energy such as nuclear, water, coal are lagging behind. Then he informed that, the concept of energy storage was not even an option 15 years ago. It was when China started mass producing solar panels that the prices dropped significantly and people started relying on solar energy. Like a dark horse, SHS is sweeping in and winning the race for clean energy economy. Dr. Kammen stressed that Bangladesh has an ample amount of clean energy resources from which a profitable and empowering economy can be built. Dr. Kammen is an expert in his field having authored/co-authored 12 books, written more than 300 peer-reviewed journal publications and contributing to Nobel prizewinning climate work with the professors at University of California, Berkeley. For his valuable words and time, Dr. Kammen was presented with a bouquet of flowers by the Director of External Affairs, Dr. Katherine Li and a crest by the Vice-Chancellor, Prof. Atiqul Islam as tokens of appreciation from NSU. Original link: http://qswownews.com/profitably-powering-the-clean-energy-economy/  

MIT Energy Initiative: Innovating for the clean energy economy

3 Questions: Innovating for the clean energy economy

Daniel Kammen of the University of California at Berkeley discusses current efforts in clean energy innovation and implementation, and what's coming next.

For a video of the talk and Q & A, click here.
Ivy Pepin | MIT Energy Initiative March 28, 2018 Screen Shot 2018-03-28 at 3.49.47 PM Daniel Kammen is a professor of energy at the University of California at Berkeley, with parallel appointments in the Energy and Resources Group (which he chairs), the Goldman School of Public Policy, and the Department of Nuclear Science and Engineering. Recently, he gave a talk at MIT examining the current state of clean energy innovation and implementation, both in the U.S. and internationally. Using a combination of analytical and empirical approaches, he discussed the strengths and weaknesses of clean energy efforts on the household, city, and regional levels. The MIT Energy Initiative (MITEI) followed up with him on these topics. Q: Your team has built energy transition models for several countries, including Chile, Nicaragua, China, and India. Can you describe how these models work and how they can inform global climate negotiations like the Paris Accords? A: My team, the Renewable and Appropriate Energy Laboratory has worked with three governments to build open-source models of the current state of their energy systems and possible opportunities for improvement. This model, SWITCH , is an exceptionally high-resolution platform for examining the costs, reliability, and carbon emissions of energy systems as small as Nicaragua’s and as large as China’s. The exciting recent developments in the cost and performance improvements of solar, wind, energy storage, and electric vehicles permit the planning of dramatically decarbonized systems that have a wide range of ancillary benefits: increased reliability, improved air quality, and monetizing energy efficiency, to name just a few. With the Paris Climate Accords placing 80 percent or greater decarbonization targets on all nations’ agendas (sadly, except for the U.S. federal government), the need for an "honest broker" for the costs and operational issues around power systems is key. Q: At the end of your talk, you mentioned a carbon footprint calculator that you helped create. How much do individual behaviors matter in addressing climate change? A: The carbon footprint, or CoolClimate project, directed by Dr. Chris Jones in my RAEL lab, is a visualization and behavioral economics tool that can be used to highlight the impacts of individual decisions at the household, school, and city level. We have used it to support city-city competitions for “California’s coolest city,” to explore the relative impacts of lifetime choices (buying an electric vehicle versus or along with changes of diet), and more. Q: You touched on the topic of the “high ambition coalition,” a 2015 United Nations Climate Change Conference goal of keeping warming under 1.5 degrees Celsius. Can you expand on this movement and the carbon negative strategies it would require? A: As we look at paths to a sustainable global energy system, efforts to limit warming to 1.5 degrees Celsius will require not only zeroing out industrial and agricultural emissions, but also removing carbon from the atmosphere. This demands increasing natural carbon sinks by preserving or expanding forests, sustaining ocean systems, and making agriculture climate- and water-smart. One pathway, biomass energy with carbon capture and sequestration, has both supporters and detractors. It involves growing biomass, using it for energy, and then sequestering the emissions. This talk was one in a series of MITEI seminars supported by IHS Markit.

Full video of presentation, “Innovating for the clean energy economy” @ MIT Energy Initiative

For the video of the talk: click here. Talk delivered February 19, 2018 Daniel Kammen is a professor of energy at the University of California, Berkeley, with parallel appointments in the Energy and Resources Group (which he chairs), the Goldman School of Public Policy, and the Department of Nuclear Science and Engineering. Recently, he gave a talk at MITEI examining the current state of clean energy innovation and implementation, both in the U.S. and internationally. Using a combination of analytical and empirical approaches, he discussed the strengths and weaknesses of clean energy efforts on the household, city, and regional levels. Q: Your team has built energy transition models for several countries, including Chile, Nicaragua, China, and India. Can you describe how these models work and how they can inform global climate negotiations like the Paris Accords? A: My laboratory has worked with three governments to build open-source models of the current state of their energy systems and possible opportunities for improvement. This model, SWITCH, is an exceptionally high-resolution platform for examining the costs, reliability, and carbon emissions of energy systems as small as Nicaragua’s and as large as China’s. The exciting recent developments in the cost and performance improvements of solar, wind, energy storage, and electric vehicles permit the planning of dramatically decarbonized systems that have a wide range of ancillary benefits: increased reliability, improved air quality, and monetizing energy efficiency, to name just a few. With the Paris Climate Accords placing 80% or greater decarbonization targets on all nations’ agendas (sadly, except for the U.S. federal government), the need for an ‘honest broker’ for the costs and operational issues around power systems is key. Q: At the end of your talk, you mentioned a carbon footprint calculator that you helped create. How much do individual behaviors matter in addressing climate change? A: The carbon footprint, or CoolClimate project, is a visualization and behavioral economics tool that can be used to highlight the impacts of individual decisions at the household, school, and city level. We have used it to support city-city competitions for “California’s coolest city,” to explore the relative impacts of lifetime choices (buying an electric vehicle versus or along with changes of diet), and more. Q: You touched on the topic of the “high ambition coalition,” a COP21 goal of keeping warming under 1.5 degrees Celsius. Can you expand on this movement and the carbon negative strategies it would require? A: As we look at paths to a sustainable global energy system, efforts to limit warming to 1.5 degrees Celsius will require not only zeroing out industrial and agricultural emissions, but also removing carbon from the atmosphere. This demands increasing natural carbon sinks by preserving or expanding forests, sustaining ocean systems, and making agriculture climate- and water-smart. One pathway, biomass energy with carbon capture and sequestration, has both supporters and detractors. It involves growing biomass, using it for energy, and then sequestering the emissions.  

Main Menu
RAEL Info

Energy & Resources Group
310 Barrows Hall
University of California
Berkeley, CA 94720-3050
Phone: (510) 642-1640
Fax: (510) 642-1085
Email: ergdeskb@berkeley.edu


Projects

  • Open the Main Menu
  • People at RAEL

  • Open the Main Menu