Search Results for 'model'

October 25, 2017 — RAEL Lunch — two student presentations! Rachael Green, Modeling Wave Energy systems | Rong Han, Integrated Assessment Models of Land Use Change in China

Two-Stage Monte Carlo Simulation to Forecast Levelized Cost of Electricity for Wave Energy Rachael Green is currently an undergraduate senior at the University of California, Berkeley. She is majoring in Environmental Economics and Policy in the College of Natural Resources with a minor in History from the College of Letters and Science. She has worked as an undergraduate researcher in the collaborative effort between the Renewable and Appropriate Energy Laboratory and CalWave Power Technologies, Inc. Despite wave energy’s vast global potential, there has been relatively little commercial deployment to date. This has been partially attributed to the large uncertainty in both the current estimated and future expected electricity generation costs associated with wave technologies. Her presentation quantifies the uncertainty of the forecasted levelized cost of electricity (LCOE) for wave energy as it relates to United States and European Union energy targets. Next month she will present this work at the International Conference on Renewable Energy Research and Applications. After graduating, Rachael hopes to continue working in the renewable energy field. Rachael_Green   Rong HAN (Ph.D Candidate in Beijing Institute of Technology, Visiting Scholar in Berkeley Energy and Climate Institute). Research progress of IAMs Downscaling model, Evaluation model and Land use model Rong HAN is currently a third year PhD Candidate in Center for Energy & Environmental Policy Research, Beijing Institute of Technology. She came to Berkeley's Energy and Climate Institute as visiting scholar for one year. During the process of PhD student, her research mainly focus on assessment of global climate policy, China’s carbon emission trading market and carbon finance. These researches have published on Journal of Cleaner Production, Natural Hazards, and Energy Policy. Climate change is a complex and comprehensive process, which can only be understood on the basis of the combined insights from various scientific disciplines. In recent years the need for integration of information among ‘earth system’ (ES), ‘vulnerability, impact, and adaptation assessment’ (VIA), and ‘integrated assessment’ (IA) communities has become stronger. The IAM (integrated assessment models) model is designed to couple of ES and IA models to account of the possible feedbacks between human systems and the earth system on the global scale. Her presentation will be focus on the recent research progress of IMA downscaling model, evaluation model and land use model. RONG  

Modeling the Clean Energy Transition in China

2017-9-12-Chengdu-Summit Portrait Amid growing California-China clean energy partnerships RAEL is partnering with both research and deployment partners in China to accelerate the decarbonization agenda.  In efforts with Tsinghua UniversityChongqing University, and North China Electric Power University, among other academic partners, as well as with local and federal partners in China, RAEL is working to accelerate the deployment of electric transportation, address air and water pollution, and to explore alternatives to the development-environmental degradation nexus.  RAEL doctoral student Anne-Perrine Avrin, who spoke on here work at a recent RAEL Lunch Seminar, is currently working with colleagues in China on electric vehicle adoption strategies (of the 2 million electric vehicles in use world-wide, 1 million are in China and over 200,000 are in California). Screen Shot 2017-09-02 at 10.04.17 AM

RAEL team publishes Power sector model for a low-​​carbon Kenya

Screen Shot 2017-08-31 at 7.16.56 AM   Click here for a direct link to the paper, published in Environmental Science & Technology (ES&T). Fast growing and emerging economies face the dual challenge of sustainably expanding and improving their energy supply and reliability while at the same time reducing poverty. Critical to such transformation is to provide affordable and sustainable access to electricity. We use the capacity expansion model SWITCH to explore low carbon development pathways for the Kenyan power sector under a set of plausible scenarios for fast growing economies that include uncertainty in load projections, capital costs, operational performance, and technology and environmental policies. In addition to an aggressive and needed expansion of overall supply, the Kenyan power system presents a unique transition from one basal renewable resource− hydropower− to another based on geothermal and wind power for ∼ 90% of total capacity. We find geothermal resource adoption is more sensitive to operational degradation than high capital costs, which suggests an emphasis on ongoing maintenance subsidies rather than upfront capital cost subsidies. We also find that a cost-effective and viable suite of solutions includes availability of storage, diesel engines, and transmission expansion to provide flexibility to enable up to 50% of wind power penetration. In an already low-carbon system, typical externality pricing for CO2  has little to no effect on technology choice. Consequently, a “ zero carbon emissions”  by 2030 scenario is possible with only moderate levelized cost increases of between $3 and $7/MWh with a number of social and reliability benefits. Our results suggest that fast growing and emerging economies could benefit by incentivizing anticipated strategic transmission expansion. Existing and new diesel and natural gas capacity can play an important role to provide flexibility and meet peak demand in specific hours without a significant increase in carbon emissions, although more research is required for other pollutant’ s impacts.

Proceedings of the National Academy publishes our critique of “WWS” model

Our paper now available from the Proceedings of the National Academy of Sciences: Previous analyses have found that the most feasible route to a low-carbon energy future is one that adopts a diverse portfolio of technologies. In contrast, Jacobson et al. (2015) consider whether the future primary energy sources for the United States could be narrowed to almost exclusively wind, solar, and hydroelectric power and suggest that this can be done at “low-cost” in a way that supplies all power with a probability of loss of load “that exceeds electric-utility-industry standards for reliability”. We find that their analysis involves errors, inappropriate methods, and implausible assumptions. Their study does not provide credible evidence for rejecting the conclusions of previous analyses that point to the benefits of considering a broad portfolio of energy system options. A policy prescription that overpromises on the benefits of relying on a narrower portfolio of technologies options could be counterproductive, seriously impeding the move to a cost effective decarbonized energy system. Or, download it from the RAEL Publications page: here. Press coverage of this paper: June 20, 2017 - Power Magazine: "Experts debunk 100% Renewable Energy Decarbonization Study by WWS Team" June 20, 2017 - The Chicago Tribune: "A bitter scientific debate just erupted over the future of America's power grid" June 20, 2017 - The New York Times: "Fisticuffs Over the Route to a Clean Energy Future" June 19, 2017 - The Washington Post: "A bitter scientific debate just erupted over the future of America's power grid" June 19, 2017 - MIT Technology Review: "Scientists sharply rebut influential renewable energy plan" June 19, 2017 - Science Daily: "Fighting global warming and climate change requires a broad energy portfolio" June 19, 2017 - Greentech Media: "100% renewable energy plan as 'significant shortcomings' say climate and energy experts". Summary: miracle_cartoon  

RAEL Meeting — SWITCH Model — Nov 4

SWITCH Model

RAEL Lab Meeting

12 - 1 pm, 4 November 2015

310 Barrows Hall, Room 323

---WEDNESDAY---

Josiah Johnston will be presenting a review of approaches for dealing with uncertainty in the context of Switch, an investment planning tool for low-emission electric power grids. The discussion will also include an introduction to stochastic programming and decomposition tools available for use with the new version of Switch from the PySP python libraries.

This lab meeting will roughly be divided into equal time for presentation and discussion. It will be of most interest to people interested in working with uncertainty in Switch, or general interest in computational tools for optimizing under uncertainty.

RAEL Lunch Seminar, Wednesday — Oct 14, 12pm — SWITCH Modeling

SWITCH Model

RAEL Lab Meeting

12 - 1 pm, 14 October 2015

310 Barrows Hall, Room 323

---WEDNESDAY---

Join in for a fun meeting discussing the progress of a variety of SWITCH projects and potential research ideas. Dan Kammen will also provide food to boost brain power and stimulate a lively discussion!

The release of the Tesla Model X

Screen Shot 2015-09-30 at 9.11.02 AM September 29, 20115 http://abc7news.com/automotive/teslas-first-suv-the-model-x-to-make-its-debut/1008623/ The very first customers who bought Tesla's new brand new SUV, will get to drive them away Tuesday night. The Tesla Model X is pricey, but right now, gas is not. Gas prices could be putting the future of electric cars in danger. Tesla's ModelX will be the technology motor company's luxury SUV model. With a price tag of more than $80,000 it's not the best option for saving a few dollars by avoiding gas pumps, especially since the price of gas has plummeted over the last year. "It's not only that Saudi Arabia and the traditional oil countries are flooding the market, we're seeing much more oil and gas being pumped in U.S. states in Canada. There is a glut of oil on the market because of new exploration technologies for fossil fuels," said University of California Berkeley professor Daniel Kammen. Those falling gas prices might be having an effect on electric car sales. This year, more than 72,000 plug-in vehicles, or EVs were sold, which is lagging behind last year's sales by about 7,000 units. But Kammen at UC Berkeley's Goldman School of Public Policy says electric cars will likely continue to grow for a few reasons. "The price to go a mile in an electric vehicle is about a third what it is to go, even with today's gas prices, than to drive a combustion vehicle," Kammen said. He says California is under a mandate to have a million EV's on the roads by 2020. And there are lots of incentives for car companies and potential owners, including HOV stickers and rebates. Chevrolet is re-launching the Volt with a sticker price that's significantly less than a Tesla. "The 2015 Volt starts at $33,995 and that's before a Federal Tax Credit of $7,500 and in California you can also apply for a $1,500 clean vehicle rebate," said General Motors product specialists Darin Jesse. It's not clear how much longer gas prices will continue to drop, but in the meantime car companies are hoping buyers will pay attention to these EV options.

SWITCH — A capacity expansion model for the electricity sector

SWITCH (Solar and wind energy integrated with transmission and conventional sources) is a linear programming modeling platform used to examine least cost energy systems designed to meet specific reliability, performance and environmental quality standards.   [caption id="attachment_751" align="alignnone" width="615"]SWITCH Project locations: April 2015 SWITCH Project locations: April 2015[/caption]   SWITCH is a capacity expansion model that invests in new generation and transmission assets as well as in end-use and demand-side management options (including electrified vehicles and storage) with a high-resolution assessment and planning package to explore the system performance resting from different scenarios. SWITCH was initially developed for California, but has been expanded and refined to explore energy choices across the US West (the WECC, Chile, Nicaragua, China), with future plans to cover the East African Power Pool (EAPP) and India. A wide range of SWITCH publications are in print and in use at various energy, climate, and development agencies.

High-​​resolution modeling of the western North American power system demonstrates low-​​cost and low-​​carbon futures

Decarbonizing electricity production is central to reducing greenhouse gas emissions. Exploiting intermittent renewable energy resources demands power system planning models with high temporal and spatial resolution. We use a mixed-integer linear programming model – SWITCH – to analyze least-cost generation, storage, and transmission capacity expansion for western North America under various policy and cost scenarios. Current renewable portfolio standards are shown to be insufficient to meet emission reduction targets by 2030 without new policy. With stronger carbon policy consistent with a 450 ppm climate stabilization scenario, power sector emissions can be reduced to 54% of 1990 levels by 2030 using different portfolios of existing generation technologies. Under a range of resource cost scenarios, most coal power plants would be replaced by solar, wind, gas, and/or nuclear generation, with intermittent renewable sources providing at least 17% and as much as 29% of total power by 2030. The carbon price to induce these deep carbon emission reductions is high, but, assuming carbon price revenues are reinvested in the power sector, the cost of power is found to increase by at most 20% relative to business-as-usual projections.

Main Menu
RAEL Info

Energy & Resources Group
310 Barrows Hall
University of California
Berkeley, CA 94720-3050
Phone: (510) 642-1640
Fax: (510) 642-1085
Email: ergdeskb@berkeley.edu


Projects

  • Open the Main Menu
  • People at RAEL

  • Open the Main Menu