Search Results for 'policy'

The Inflation Reduction Act and CHIPS could kick US climate policy back into action

For the original link, August 8, 2022, click here. https://www.popsci.com/environment/chips-ira-climate-change-policy/ Bt Thor Benson, for Popular Science For the past few weeks, climate action in the US appeared to have a bleak outlook. But things are looking to change with the passage and introduction of two new groundbreaking bills. Congress passed a bill called the CHIPS and Science Act on July 28th to boost domestic semiconductor production and fund scientific research. The Senate also just passed an expansive bill called the Inflation Reduction Act (IRA). Both bills would do quite a bit to help the US fight climate change—much to the relief of many Democrats in Congress worried about getting climate legislation passed before the midterms. But with so much legislation floating around, keeping track of each bill’s actions can be tricky. Here’s what you need to know about climate change policies in the IRA and CHIPS act.

Direct climate action from the Inflation Reduction Act

Screen Shot 2022-08-08 at 8.48.34 AM The Inflation Reduction Act includes roughly $369 billion for climate programs, meaning, if passed, it could be the most significant climate bill Congress has ever passed. The bill offers tax incentives to companies to increase the production of wind, solar, and battery technologies. Additionally, the bill limits the amount of methane a US company can emit, which is crucial because methane is a potent greenhouse gas. As for ordinary folks, the bill offers a $7,500 tax credit toward purchasing a new electric vehicle and a $4,000 tax credit toward purchasing a used one and more. This is important because electric cars are better for the climate than gasoline-powered vehicles. But, it may have the bonus of convincing car manufacturers to keep building more electric vehicles and could increase the building of charging stations. “Whether you’re on the EV side, whether you’re on the stationary green power side, seeing them all in the same bill is critically important,” Daniel Kammen, a professor of energy at the University of California, Berkeley. “It messages that $369 billion is being spent in a holistic way.” A report from the Rhodium Group, an independent research firm, found the IRA would reduce greenhouse gas emissions by 31 to 44 percent from 2005 levels by 2030. Greenhouse gas emissions peaked countrywide in 2005, but since then, carbon emissions have shrunk by 20 percent. The Biden administration has set a goal of reducing emissions by 50 percent from 2005 levels by 2030—so the IRA would provide a significant boost. Current projections show the IRA wouldn’t get us to the Biden administration’s climate goals by itself, but Kammen feels that the effects of it passing could “snowball.” He says that the initial investment could spur further investments and breakthroughs to help us reach or exceed planned emission reductions.

The CHIPS bill ups funding in science and technology

The CHIPS and Science Act mainly focuses on increasing the domestic production of semiconductors used in computers, phones, vehicles and more. That being said, the bill contains other important provisions. It includes roughly $200 billion of funding for scientific research, which is a significant increase in funding. That money could be critical in developing new technologies—from artificial intelligence to nuclear fusion—and could help the US reach its climate goals. Kammen says the bill’s funding could be beneficial as the US tries to build more renewable energy. “The more we think about what has driven the remarkable cost declines in solar, in batteries and wind, it’s certainly manufacturing, but it’s also systems integration,” Kammen says. “That’s a place where the US is better poised than it may think it is to be a real leader. Clean energy systems require as much smart interconnection as they do great pieces of individual hardware.” The funding in the CHIPS bill could help the US further integrate its energy systems, making for more effective and efficient energy use in towns and cities. “Assuming we get a version of the Schumer-Manchin IRA bill and [CHIPS], it actually sets the US up pretty well,” Kammen says, “because you get both upstream, smart integration developments and $369 billion of deployment money from tax credits, so I think they do work together.” Together, these two bills work to fund urgently needed change in climate policy, considering there’s only so much time to do something. The CHIPS bill’s investments could also bring us the next generation of climate-fighting technologies and better integrate our existing and developing energy systems. The US looked poised to fail in its attempts to fight climate change, but these bills are creating some hope.

A panel data analysis of policy effectiveness for renewable energy expansion on Caribbean islands

Accelerating the rate of renewable energy deployment in Small Island Developing States is critical to reduce dependence on expensive fossil fuel imports and meet emissions reductions goals. Though many islands have now introduced policy measures to encourage RE development, the existing literature focuses on qualitative recommendations and has not sought to quantitatively evaluate and compare the impacts of policy interventions in the Caribbean. After compiling the first systematic database of RE policies implemented in 31 Caribbean islands from 2000 to 2018, we conduct an econometric analysis of the effectiveness of the following five policy interventions in  promoting the  deployment of  RE: investment incentives, tax  incentives, feed-in tariffs, net- metering and net-billing programs, and regulatory restructuring to allow market entry by independent power producers. Using a fixed effects model to control for unit heterogeneities between islands, we find evidence that net-metering/net-billing programs are strongly and positively correlated with increases in installed capacity of renewable energy - particularly solar PV. These findings suggest that the RE transition in the Caribbean can be advanced through policies targeting the adoption of small-scale, distributed photovoltaics.

Exploring the trade-​​offs between electric heating policy and carbon mitigation in China

China has enacted a series of policies since 2015 to substitute electricity for in-home combustion for rural residential heating. The Electric Heating Policy (EHP) has contributed to significant improvements in air quality, benefiting hundreds of millions of people. This shift, however, has resulted in a sharp increase in electric loads and associated carbon emissions. Here, we show that China’s EHP will greatly increase carbon emissions. We develop a theoretical model to quantify the carbon emissions from power generation and rural residential heating sectors. We found that in 2015, an additional 101.69–162.89 megatons of CO2 could potentially be emitted if EHP was implemented in 45–55% of rural residents in Northern China. In 2020, the incremental carbon emission is expected to reach 130.03–197.87 megatons. Fortunately, the growth of carbon emission will slow down due to China’s urbanization progress. In 2030, the carbon emission increase induced by EHP will drop to 119.19–177.47 megatons. Finally, we conclude two kinds of practical pathways toward low-carbon electric heating, and provide techno-economic analyses.

Laos Energy Modeling and Policy Analysis (LEMPA) Project

Meet the Laos Energy Modeling and Policy Analysis (Undergraduate!) Team: The focus of this inter-disciplinary and inter-university research group is to develop sustainable energy, water, and land-use scenarios for Laos, and to work with local stake-holders on the costs and benefits for communities, the nation, and the regional commerce in energy, water, food, timber and other commodities. Aaditee Kudrimoti Screen Shot 2019-09-21 at 8.21.05 AMBio: Aaditee is a fourth-year at UC Berkeley studying political science and public policy with a concentration in energy, development, and international relations. Aaditeeis originally from Tucson, Arizona, where she began to develop an interest in international environmental affairs. At UC Berkeley, Aaditeeis working on projects in the political economy of Chinese development finance, rural electrification, and collective action. Aaditeehas become especially interested in how the rise of renewable technology is influencing energy diplomacy around the world. She hopes to pursue a career in academia and public policy and work on governance tools to build the bargaining capacity of LDCs against MNCs, foreign state-owned enterprises, etc. on the subject of FDI and other types of investment. She sees SWITCH-Laos as having the potential to serve as a critical tool in assisting the increase of the Lao people’s bargaining power over FDI in the energy sector and thus their autonomy in determining their own economic development. Outside school, Aaditee’s interests include dance, food journalism, and cooking.   Alex Lathem Screen Shot 2019-09-21 at 8.20.29 AMBio: Alex Lathem is a third-year undergraduate at Yale University. He is a physics major with several years of experience using programming languages, including Python SQL, C, and Bash, to analyze scientific data. Previous research projects Alex has worked on include astrometry of near-Earth asteroids and the creation of a Hubble curve through the analysis of Type Ia supernovae. Alex spent the summer of 2019 working on the SWITCH model for China, and is very excited to apply the skills he learned there to a version for Laos. Outside of research, Alex is also interested in music, video game design, linguistics, and history.   Ashley Yip Screen Shot 2019-09-21 at 8.19.15 AMBio: Ashley is a second-year undergraduate studying environmental science with an emphasis in global politics. She moved to New Mexico, where she developed an interest in environmental affairs. At UC Berkeley, she is involved in a pre-law association that helped her explore her interest in law and how she may integrate that into environmentalism. Off campus, she is working on a sex education reform project in Singapore with the Ministry of Education. She is constantly exploring the intersection between policy, education, and the environment. She hopes to return home to Singapore and pursue a career in international environmental policy or law within Southeast Asia. Ashley chose to work on SWITCH-Laos not only because greening ASEAN's economic development is essential to tackling climate change, but also because she is familiar with the demographic. She has done research in regards to both urban and rural agriculture in Asia and the US, and led research for environmental management in business operations. Outside of school, her interests include climbing, hiking, piano, and camper vans. Rachel Ng Screen Shot 2019-09-21 at 8.18.18 AM Bio: Rachel is a second-year Environmental Science and Data Science major. A Singapore-native, Rachel describes that SWITCH-Laos extremely important to her because it is an important step towards the energy security of Southeast Asia. She believes that the sustainable electrification of Southeast Asia is key to regional grid stability and energy trade. She is pursuing SWITCH-Laos as critical in leading the way towards sustainable electrification. Rachel is interested in the intersectionality between climate change and community, exploring how community based issues caused by climate change can be alleviated through data. Furthermore, Rachel is currently concerned about equal access to education and volunteers weekly as a mentor to elementary school students. In the future, she hopes to return to Singapore and guide environmental change through creating an ecosystem of sustainable communities and businesses. Her hobbies include dance, rock climbing and water sports.

RAEL Lunch (note special Thursday date & location!): Michael Grubb, “Innovation, economics and policy in the energy revolution: Insights from the UK electricity transition and wider implications”

Please join us for a special joint Innovation, economics and policy in the energy revolution: Insights from the UK electricity transition and wider implications   Summary: This talk will outline both theory and practice of energy transition and decarbonisation, drawing on long experience in the UK which has been a battleground between different approaches to electricity regulation and the implications of decarbonisation – culminating in halving CO2 emissions from the sector from the levels in 1990. Innovation in both policy and technology has been fundamental to this.  Drawing on the book (joint with Profs Jean-Charles Hourcade and Karsten Neuhoff) Planetary Economics: Energy, Climate Change and The Three Domains of Sustainable Development, the talk will explain a broadened theoretical framework and show how this can reshape our view of both the economic and political dimensions of effective policy, including (but not confined to) to the energy transition.  The author will also present recent work on some implications of the approach for modelling of climate mitigation and the economic case for policy mixes.   20140611181026_h53982b12657bc   For more on Professor Grubb:, click here. Professor of Energy and Climate Change UCL - Institute for Sustainable Resources Central House | 14 Upper Woburn Place London | WC1H 0NN www.bartlett.ucl.ac.uk/sustainable

Foreign Policy editorial: The Beautiful Rivers — And the Dammed

To access the article, click here. The Beautiful Rivers—And the Dammed Advances in solar and wind power mean that hydropower is no longer the only renewable game in town—and that’s good news for the world’s rivers. BY JEFF OPPERMANCHRIS WEBERDANIEL KAMMEN NOVEMBER 23, 2018, 9:05 AM Foreign Policy - https://foreignpolicy.com/2018/11/23/the-beautiful-rivers-and-the-dammed/ Screen Shot 2018-11-23 at 10.33.05 PM Figure: Water is released from the floodgates of the Xiaolangdi dam on the Yellow River near Luoyang, China on June 29, 2016. (STR/AFP/Getty Images) In October, the Intergovernmental Panel on Climate Change released a report outlining strategies the world can pursue to keep global warming below 1.5 degrees Celsius and maintain healthy economies and ecosystems. But unless we are smart about how we implement that blueprint, it could cause irreparable damage to the world’s great rivers. The panel’s report urges a rapid transition to low-carbon, renewable sources of electricity. That call to action could trigger expanded investment in hydropower, which is currently the world’s main source for that kind of energy (70 percent as of 2017). But if that development follows the pattern of earlier dam-building, it could accelerate an alarming loss of rivers and their resources, including of the fish that feed hundreds of millions of people. The case of the Mekong River puts the problem into sharp relief. The river is the world’s most productive freshwater fishery—it provides nearly 20 percent of the annual global freshwater fish harvest, the primary source of protein for tens of millions of people in the region. Already, several hydropower dams on the Mekong are under construction or are moving through the planning process. Scientists estimate that those dams, if completed, will cut the river’s annual harvest by half. With the Mekong Delta’s sand supply cut off, scientists project that it will sink and shrink, with more than half underwater by the end of the century. The dams are also projected to trap within their reservoirs more than 90 percent of the sand that would otherwise flow into the Mekong Delta, which is home to 17 million people and produces 90 percent of Vietnam’s rice exports. With its sand supply cut off, scientists project that the delta will sink and shrink, with more than half underwater by the end of the century. It is easy to hear such stories and conclude that the world faces an agonizing dilemma: Must we sacrifice our rivers to save our climate? Even just a few years ago, that trade-off seemed unavoidable. With wind and solar power limited by their expense and variability, global hydropower was projected to nearly double by 2050. Massive dams were under construction or planned for many of the world’s great rivers, including the Yangtze, Mekong, and most tributaries of the Amazon. Some governments used climate and renewable energy objectives to justify these projects, even as scientists quantified their impacts and affected communities and indigenous groups protested. But we do not need to sacrifice rivers for zero-carbon energy. In the last two years, solar energy has rapidly become more economically viable due to technological improvements and to economies of scale in production and deployment. Whereas solar energy used to cost 20 cents or more per kilowatt-hour, new projects in Chile, Mexico, and Saudi Arabia have come in at one-tenth that cost. Wind energy costs have likewise plummeted. In 2017, a winning bid for a new wind farm in Mexico featured costs of around 2 cents per kWh. That was half the previous year’s lowest bid there. This makes solar and wind the price leaders across much of the world. Even with falling costs, the variability of wind and solar power remain a challenge. Simply put, in order for these technologies to offer reliable, round-the-clock electricity generation, there needs to be a way to store power when the wind is blowing and the sun is shining and then deploy it when the wind dies down or the sun sets. Fortunately, the costs for storage technologies are plummeting as well, with the cost of lithium ion batteries, capable of grid-scale storage, dropping by about 90 percent over the past few years. New technologies are emerging as well. For example, a Chilean solar power plant that uses molten salt as storage recently offered to provide 24-hour baseload electricity at less than 5 cents per kWh. That is comparable to or cheaper than most hydropower and fossil fuel options. Tesla and Google X, meanwhile, are pursuing “moonshot” solutions for storage technologies. Also tipping the scales toward wind and solar is that, among large infrastructure projects, hydropower dams have among the worst performance in terms of delays and cost overruns, in part due to the conflict and controversy surrounding them. Whereas some dams take a decade to complete, wind and solar power can be delivered through rapid, smaller-scale, and lower-risk projects that tend to engender far less conflict. Governments are taking note. Thailand earlier this year signaled that it would delay signing a power purchase agreement for Pak Beng, a 912-megawatt hydropower dam that Laos is planning for the Mekong. In announcing the delay, the country stated that it needed to revisit its energy strategy since other renewable sources, including wind and solar, were becoming increasingly viable. Thailand was slated to buy 90 percent of the dam’s electricity, so its change of plans could spell the end of the project. In Guyana, meanwhile, rising cost estimates and delays for the Amaila Falls hydropower project led the government and financiers to transfer funding intended for the dam toward a 100-megawatt solar project. The rapidly evolving renewable energy landscape doesn’t mean an end to hydropower, but rather a shift in its role. Hydropower reservoirs are currently the dominant form of energy storage for grids, and although other forms of storage are improving, they will continue to provide critical storage services in the near future. Upgraded older dams and strategically planned new projects, carefully located to minimize environmental and social disruption, can emphasize energy storage to facilitate adding large increments of wind and solar into a grid. Although it is now possible to build affordable, low-carbon wind and solar systems, they still face constraints, including political and social preferences for large infrastructure projects. Pak Beng may have been paused, but other dam projects on the Mekong and on other key rivers are moving forward. It would be a great tragedy if the renewable revolution arrived just a few years too late to save the world’s great rivers. Market reforms and new financial mechanisms can accelerate the adoption of more sustainable energy systems, as can innovative science. For example, the Renewable and Appropriate Energy Laboratory at the University of California, Berkeley recently developed and is using an energy planning model for Laos. The lab found that investments in solar panels (backed up by existing hydropower) could meet that nation’s objectives for selling electricity to neighbors—with greater returns and lower risks than the planned dams that threaten the Mekong’s fish harvests and the viability of its delta. There’s no need to continue accepting tragic trade-offs between healthy rivers and low-cost, reliable, and renewable electricity. The renewable revolution provides an opportunity to have both. Governments, funders, developers, and scientists should seize it. Jeff Opperman is the World Wildlife Fund’s global lead scientist for freshwater. Twitter: @jjopperman Chris Weber is the World Wildlife Fund’s global lead scientist for climate and energy. Daniel Kammen is a professor in and the chair of the Energy and Resources Group and a professor of public policy at the University of California, Berkeley. He has been a coordinating lead author for the Intergovernmental Panel on Climate Change and a science envoy for the U.S. State Department. Twitter: @dan_kammen Foreign Policy - https://foreignpolicy.com/2018/11/23/the-beautiful-rivers-and-the-dammed/    

Main Menu
RAEL Info

Energy & Resources Group
310 Barrows Hall
University of California
Berkeley, CA 94720-3050
Phone: (510) 642-1640
Fax: (510) 642-1085
Email: ergdeskb@berkeley.edu


Projects

  • Open the Main Menu
  • People at RAEL

  • Open the Main Menu