have produced a paper that appeared in Science on November 13, 2015. You can download the:
Summary here for free (open access, by special permission),
Reprint here for free (open access, by special permission),
and the
Full text herefor free (open access, by special permission).
For this we thank the AAAS and Science Magazine.
A key part of this project is to collect information and to build a community of practitioner groups that at share their experiences and needs in accessing, using , and finding support in integrating climate information in their operations.
We ask you to read the paper and review the table below of example groups, and to consider both sharing this with groups who you know who have lessons to share, and for those who can upload their information and to download the information on what these groups are doing.
We will update the table of groups regularly as more organizations share their data. You can view and download that data below.
We also invite you feedback on other information you would like to have collected and shared in the process.
[su_tabs][su_tab title="Stakeholders List"]
View this list on Google Sheets
[/su_tab]
[su_tab title="+ Add Your Network"]
To enter your organization in our Stakeholders in Science database please fill out the form below or on a separate page.
[/su_tab]
[/su_tabs]
You can also download the spreadsheet here.
ABOUT THE AUTHORS:
Nicole L. Klenk, Katie Meehan, Sandra Lee Pinel, Fabian Mendez, Pablo Torres Lima, andDaniel M. KammenNicole Klenk'sresearch examines the role of (environmental) science in society, the science-policy interface, the politics of knowledge co-production, mobilization and application, and new modes of environmental governance. Her research is mostly situated in the interpretive social sciences and her theoretical orientation is interdisciplinary, drawing from science studies, post-structuralist political theory, and pragmatism. Her areas of focus are forestry, biodiversity conservation and climate change adaptation.
Email: nicole.klenk@utoronto.caFabian Mendez, physician and PhD in Epidemiology, is full time professor and head of the School of Public Health at the Universidad del Valle in Cali, Colombia. His research interests focus in the complex relationships between environment and health with interdisciplinary approaches. He has developed research in different topics from vector borne diseases to health effects of environmental pollutants, and right now develops a project to evaluate health vulnerability to climate change with a watershed approach in an area of Colombia.
Email: fmendez@grupogesp.org
Katie Meehan is assistant professor of Geography and co-director of the Science, Environment, and Society Lab at the University of Oregon. Her research and teaching interests focus on water governance, urbanization, the science-policy interface, and climate change adaptation. Recent work, supported by a Fulbright NEXUS grant, examines the spatial governance challenges associated with institutionalizing local knowledge and non-networked water supply technologies in Mexico City
Email:meehan@uoregon.eduSandra Lee Pinel is a certified community and regional planner (AICP) and SFAA member since 1988. PhD in Urban and Regional Planning with minors in Anthropology and Latin American Studies. Research on co-management and collaborative planning with local and indigenous communities and government agencies. Assistant professor of sustainable community and regional planning at the Department of Conservation Social Sciences, U Idaho. Area focus includes Pueblo tribes in the Southwest, Philippines, Peru, and northern United States protected areas and community interface.
Email: sleepinel@gmail.com
Pablo Torres LimaAgronomist specialist in the areas of sustainable development, social anthropology, regional development, environmental design, agroecology, farming systems and social organization.
Email: ptorres@correo.xoc.uam.mx
This project is supported by the Fulbright NEXUS Regional Fellows Program, for which Daniel Kammen is a Co-Lead Scholar, and all of the other authors are 2014 - 2016 Fellows.
For the original in The New Yorker (February 19, 2021), click here.By Rebecca Tuhus-Dubrow
In 2004, Heather Hoff was working at a clothing store and living with her husband in San Luis Obispo, a small, laid-back city in the Central Coast region of California. A few years earlier, she had earned a B.S. in materials engineering from the nearby California Polytechnic State University. But she’d so far found work only in a series of eclectic entry-level positions—shovelling grapes at a winery, assembling rectal thermometers for cows. She was twenty-four years old and eager to start a career.
One of the county’s major employers was the Diablo Canyon Power Plant, situated on the coastline outside the city. Jobs there were stable and well-paying. But Diablo Canyon is a nuclear facility—it consists of two reactors, each contained inside a giant concrete dome—and Hoff, like many people, was suspicious of nuclear power. Her mother had been pregnant with her in March, 1979, when the meltdown at a nuclear plant on Three Mile Island, in Pennsylvania, transfixed the nation. Hoff grew up in Arizona, in an unconventional family that lived in a trailer with a composting toilet. She considered herself an environmentalist, and took it for granted that environmentalism and nuclear power were at odds.
Nonetheless, Hoff decided to give Diablo Canyon a try. She was hired as a plant operator. The work took her on daily rounds of the facility, checking equipment performance—oil flows, temperatures, vibrations—and hunting for signs of malfunction. Still skeptical, she asked constant questions about the safety of the technology. “When four-thirty on Friday came, my co-workers were, like, ‘Shut up, Heather, we want to go home,’ ” she recalled. “When I finally asked enough questions to understand the details, it wasn’t that scary.”
In the course of years, Hoff grew increasingly comfortable at the plant. She switched roles, working in the control room and then as a procedure writer, and got to know the workforce—mostly older, avuncular men. She began to believe that nuclear power was a safe, potent source of clean energy with numerous advantages over other sources. For instance, nuclear reactors generate huge amounts of energy on a small footprint: Diablo Canyon, which accounts for roughly nine per cent of the electricity produced in California, occupies fewer than six hundred acres. It can generate energy at all hours and, unlike solar and wind power, does not depend on particular weather conditions to operate. Hoff was especially struck by the fact that nuclear-power generation does not emit carbon dioxide or the other air pollutants associated with fossil fuels. Eventually, she began to think that fears of nuclear energy were not just misguided but dangerous. Her job no longer seemed to be in tension with her environmentalist views. Instead, it felt like an expression of her deepest values.
In late 2015, Hoff and her colleagues began to hear reports that worried them. P.G. & E., the utility that owns Diablo Canyon, was in the process of applying to renew its operating licenses—which expire in the mid-twenty-twenties—with the federal Nuclear Regulatory Commission. Because its cooling system takes in and spits out about 2.5 billion gallons of ocean water each day, the plant also needs a lease from the California State Lands Commission in order to operate, and P.G. & E. was applying to renew that as well. Environmental groups had come to the commission with long-standing concerns about the effects of the cooling system on marine life and about the plant’s proximity to several geologic faults. The commission, chaired by Gavin Newsom, then the lieutenant governor, had agreed to take those issues into account. At a meeting that December, Newsom said, “I just don’t see that this plant is going to survive beyond ’24-2025.”
Around this time, Hoff discovered a Web site called Save Diablo Canyon. The site had been launched by a man named Michael Shellenberger, who ran an organization called Environmental Progress, in the Bay Area. Shellenberger was a controversial figure, known for his pugilistic defense of nuclear power and his acerbic criticism of mainstream environmentalists. Hoff had seen “Pandora’s Promise,” a 2013 documentary about nuclear power, in which Shellenberger had been featured. She e-mailed him to ask about getting involved, and he offered to give a talk to plant employees. Hoff publicized the event among her colleagues, and baked about two hundred chocolate-chip cookies for the audience.
On the evening of February 16, 2016, a couple hundred people filed into a conference room at a local Courtyard Marriott hotel. Shellenberger told the audience that Diablo Canyon was essential to meeting California’s climate goals, and that it could operate safely for at least another twenty years. He said that it was at risk of being closed for political reasons, and urged the workers to organize to save their plant, for the sake of their jobs and the planet.
Kristin Zaitz, one of Hoff’s co-workers, was also in attendance. A California native and civil engineer, she had worked at Diablo Canyon since 2001, first conducting structural analyses—including some meant to fortify the plant against earthquakes—and then managing projects. Zaitz, too, came from a background that predisposed her to distrust nuclear power—in her case, an environmentally minded family and a left-leaning social circle. When she first contemplated working at Diablo Canyon, she imagined the rat-infested Springfield Nuclear Power Plant on “The Simpsons,” where green liquid oozes out of tanks. Eventually, like Hoff, she changed her thinking. “What we were doing actually aligned with my environmental values,” she told me. “That was shocking to me.”
Zaitz and Hoff sometimes bumped into each other at state parks, where both volunteered on weekends with their children. After Shellenberger’s talk, they lingered, folding up chairs and talking. Before long, they decided to team up. Using the name of Shellenberger's site Save Diablo Canyon, they organized a series of meetings at a local pipe-fitters’ union hall. They served pizza for dozens of employees and their family members, who wrote letters to the State Lands Commission and other California officials. Other nuclear plants across the country were also at risk of closing, and soon they decided that their mission was bigger than rescuing their own plant. They wanted to correct what they saw as false impressions about nuclear power—impressions that they had once had themselves—and to try to shift public opinion. They would show that “it’s O.K. to be in favor of nuclear,” Zaitz said—that, in fact, if you’re an environmentalist, “you should be out there rooting for it.”
Hoff and Zaitz formed a nonprofit. Like the leaders of many other movements led by women—protests against war, drunk driving, and, of course, nuclear power—they sought to capitalize on their status as mothers. They toyed with a few generic names—Mothers for Climate, Mothers for Sustainability—because they worried that the word “nuclear” would scare some people off. But they ultimately discarded those more innocuous options. “We wanted to be really clear that we think nuclear needs to be part of the solution,” Zaitz said. They now run a small activist organization, Mothers for Nuclear, which argues that nuclear power is an indispensable tool in the quest for a decarbonized society.
On December 8, 1953, President Dwight Eisenhower delivered his “Atoms for Peace” speech at the United Nations General Assembly. He described the dangers of atomic weapons, but also declared that “this greatest of destructive forces can be developed into a great boon, for the benefit of all mankind.” Eisenhower proposed that governments make contributions from their stockpiles of uranium and fissionable materials to an international atomic-energy agency. One purpose of such an agency, he suggested, would be “to provide abundant electrical energy in the power-starved areas of the world.”
The first commercial nuclear power plant in the United States opened four years later, in Beaver County, Pennsylvania. In the following decades, dozens more were constructed. There are currently fifty-six nuclear power plants operating in the U.S. They provide the country with roughly twenty per cent of its electricity supply— more than half of its low-carbon electricity.
The plants were not always presumed to be environmentally unfriendly. At the dawn of the nuclear age, some conservationists, including David Brower, the longtime leader of the Sierra Club, supported nuclear power because it seemed preferable to hydroelectric dams, the construction of which destroyed scenery and wildlife by flooding valleys and other ecosystems. But Brower changed his mind in the late nineteen-sixties and, after a bitter split within the Sierra Club over whether to support the construction of Diablo Canyon, left to found Friends of the Earth, which was vehemently anti-nuclear. As John Wills explains in his 2006 book, “Conservation Fallout,” these disputes coincided with broader philosophical shifts. Conservationism—with its focus on the preservation of charismatic scenery for outdoor adventures—was giving way to the modern environmentalist movement, sparked in part by Rachel Carson’s 1962 book, “Silent Spring.” Carson’s book, which investigated the dangers posed by pesticides, articulated an ecological vision of nature in which everything was connected in a delicate web of life. Nuclear power was associated with radiation, which, like pesticides, could threaten that web.
By 1979, the U.S. had seventy-two commercial reactors. That year proved pivotal in the shaping of public opinion toward nuclear power in America. On March 16th, “The China Syndrome,” starring Jane Fonda, Jack Lemmon, and Michael Douglas, was released; the film portrayed corruption and a meltdown at a fictional nuclear plant. Twelve days later, one of the two reactors at the Three Mile Island Nuclear Generating Station in southeastern Pennsylvania partially melted down. Most epidemiological studies would eventually determine that the accident had no detectable health consequences. But at the time there was no way the public could know this, and the incident added momentum to the anti-nuclear movement. By the time of the Chernobyl catastrophe, in Soviet Ukraine, in 1986—widely considered to be the worst nuclear disaster in history—opposition to nuclear power was widespread. Between 1979 and 1988, sixty-seven planned nuclear-power projects were cancelled. In the mid-eighties, the Department of Energy began research into the “integral fast reactor”—an innovative system designed to be safer and more advanced. In 1994, the Clinton Administration shut the project down.
Today, the looming disruptions of climate change have altered the risk calculus around nuclear energy. James Hansen, the nasascientist credited with first bringing global warming to public attention, in 1988, has long advocated a vast expansion of nuclear power to replace fossil fuels. Even some environmental groups that have reservations about nuclear energy, such as the Natural Resources Defense Council and the Environmental Defense Fund, have recognized that abruptly closing existing reactors would lead to a spike in emissions. But U.S. plants are aging and grappling with a variety of challenges. In recent years, their economic viability has been threatened by cheap, fracked natural gas. Safety regulations introduced after the meltdowns at Japan’s Fukushima Daiichi nuclear plant, in 2011, have increased costs, and, in states such as California, legislation prioritizes renewables (the costs of which have also fallen steeply). Since 2013, eleven American reactors have been retired; the lost electricity has largely been replaced through the burning of fossil fuels. At least eight more closures, including Diablo Canyon’s, are planned. In a 2018 report, the Union of Concerned Scientists concluded that “closing the at-risk plants early could result in a cumulative 4 to 6 percent increase in US power sector carbon emissions by 2035.”
The past decade has seen the rise of a contingent of strongly pro-nuclear environmentalists. In 2007, Shellenberger and his colleague Ted Nordhaus co-founded the Breakthrough Institute, a Bay Area think tank known for its heterodox, “ecomodernist” approach to environmental problems. The organization, which presents itself as more pragmatic than the mainstream environmental movement, supports nuclear power alongside G.M.O.s and agricultural intensification. Other pro-nuclear groups include Third Way, a center-left think tank, and Good Energy Collective, a policy-research organization. (Shellenberger left the Breakthrough Institute, in 2015, and founded Environmental Progress, partly to focus more on efforts to save existing plants.)
The 2011 Fukushima disaster shifted the landscape of opinion, but not in entirely predictable ways. Immediately after Fukushima, anti-nuclear sentiment surged; Japan began to shutter its nuclear plants, as did Germany. And yet, as Carolyn Kormann has written, studies have found few health risks connected to radiation exposure in Japan in the wake of the accident. (The evacuation itself was associated with more than a thousand deaths, as well as a great deal of economic disruption.) Pro-nuclear advocates now point out that, after retiring some of their nuclear plants, Japan and Germany have become increasingly reliant on coal.
Heather Hoff watched news footage of the Fukushima disaster while at Diablo Canyon. What she saw resembled the scenarios she had learned about in training—situations that she had prepared for but never expected to face. “My heart instantly filled with fear,” she later wrote, on the Mothers for Nuclear Web site. For a time, her confidence in nuclear power was shaken. But, as more information emerged, she came to believe that the accident was not as cataclysmic as it had initially appeared to be. Eventually, Hoff concluded that the incident was an opportunity to learn how to improve nuclear power, not a reason to give up on it. She and Zaitz visited the site in 2018. They saw black plastic bags of contaminated soil heaped on the roadside, and ate the local fish. Afterward, they both blogged about the experience. Zaitz wrote that she understood the fear provoked by radiation, “with its deep roots in the horrendous human impacts caused by the atomic bomb.”
Pro-nuclear environmentalists often tell a conversion story, describing the moment when they began to see nuclear power not as something that could destroy the world but as something that could save it. They argue that much of what we think we know about nuclear energy is wrong. Instead of being the most dangerous energy source, it is one of the safest, linked with far fewer deaths per terawatt-hour than all fossil fuels. We perceive nuclear waste as uniquely hazardous, but, while waste from oil, natural gas, and coal is spewed into the atmosphere as greenhouse gases and as other forms of pollution, spent nuclear-fuel rods, which are solid, are contained in concrete casks or cooling pools, where they are monitored and prevented from causing harm. (The question of long-term storage remains fraught.) Most nuclear enthusiasts believe that renewables have a role to play in the energy system of the future. But they are skeptical of the premise that renewables alone can reliably power modern societies. And—in contrast to an environmental movement that has historically advocated the reduction of energy demand—pro-nuclear groups tend to focus more on the value that abundant nuclear energy could have around the world.
Charlyne Smith, a twenty-five-year-old Ph.D. candidate in nuclear engineering at the University of Florida, who shared her story on the Mothers for Nuclear Web site, grew up in rural Jamaica, where she had firsthand experience of “energy poverty.” During hurricanes, she told me, no one knew when the electricity would come back; food would spoil in the fridge. Smith learned about nuclear power as an undergraduate and decided to enter the field, with the goal of bringing reactors to the Caribbean. She is not naïve about the risks: she is writing a dissertation on nuclear proliferation. But, she says, “Waste and radiation—those are risks that are minimizable. Proliferation of nuclear material—that risk is minimizable. Versus what you can get out of nuclear energy, weighing the pros and cons. I strongly believe that nuclear energy can solve countless problems.”
The pro-nuclear community is small and fractious. There are debates about how large a role renewables should play and about whether to focus on preserving existing plants or developing advanced reactors, which have the potential to shut down automatically in the event of overheating and to run on spent fuel. (These reactors are still in the experimental phase.) There are also differences in rhetoric. At one end of the spectrum is Shellenberger, who seems to see mainstream environmentalists as his main adversaries; his newest book is titled “Apocalypse Never: Why Environmental Alarmism Hurts Us All.” His recent commentary decrying what he calls the climate scare has been widely circulated in right-wing circles and has perplexed some pro-nuclear allies. At the other end is Good Energy Collective, co-founded, recently, by Jessica Lovering, Shellenberger’s former colleague at the Breakthrough Institute. Her organization situates itself specifically on the progressive left, and is attempting to ally itself with the broader environmental movement and with activists focussed on social and racial justice. Mothers for Nuclear falls somewhere in between: their tone is less combative than Shellenberger’s, but Hoff and Zaitz often seem frustrated with anti-nuclear arguments and, in their social media feeds, point out the downsides of renewables—an emphasis that may turn off some of the people they are trying to persuade. (They believe that nuclear power should do most of the work of decarbonization, supplemented by renewables.)
Nuclear energy scrambles our usual tribal allegiances. In Congress, Democratic Senators Cory Booker and Sheldon Whitehouse have co-sponsored a bill with Republican Senators John Barrasso and Mike Crapo that would invest in advanced nuclear technology and provide support for existing plants that are at risk of closure; a climate platform drafted by John Kerry and Alexandria Ocasio-Cortez included a plan to “create cost-effective pathways” for developing innovative reactors. And yet some environmental organizations, including Greenpeace and Climate Justice Alliance, deplore nuclear energy as unsafe and expensive. Perhaps most telling is the ambivalence that some groups express. Although the Union of Concerned Scientists has warned about the climate impacts of shutting down nuclear facilities, it has historically sounded the alarm about nuclear risk. Ed Lyman, its director of nuclear-power safety, told me that, because “there are so many uncertainties associated with nuclear safety analysis,” it’s “very hard to make a conclusion about whether it’s safe or not.” He noted, dispiritingly, that climate change could increase the hazards at nuclear plants, which will have to contend with more extreme weather events.
When Hoff and Zaitz officially launched Mothers for Nuclear, on Earth Day, 2016, they had to figure out how to tell their story and to change minds. The standard images of renewables—gleaming solar panels, elegant wind turbines in green fields—are welcoming, even glamorous. It seemed to Hoff and Zaitz that, by comparison, the nuclear industry had done a terrible job at public relations. By emphasizing safety, they thought, the industry had activated fears. Airlines don’t advertise by touting their safety records. It might be better to unapologetically celebrate nuclear energy for its strengths.
They gave talks at schools and conferences, shared stories on their Web site, posted on social media, and eventually started chapters in other countries. Iida Ruishalme, a Finnish cell biologist who lives in Switzerland and now serves as Mothers for Nuclear’s director of European operations, told me that she was drawn to the organization, in part, because of its appeal to emotion. The widespread impression, she said, is that “people who like nuclear are old white dudes who like it because it’s technically cool.” Mothers for Nuclear offered “this very emotional, very caring point of view,” she said. “The motivation comes from wanting to make it better for our children.” Ruishalme said that online commenters often tell her that the group is “clearly propaganda, a lobbyist front, not sincere—because it’s so preposterous to think that mothers would actually do this.” On the organization’s Web site, a photo montage of women and children is accompanied by a caption clarifying that they are pictures of real people who support the group—not stock images.
Among opponents, there is a long-standing assumption that anyone who promotes nuclear power must be a shill. The name “Mothers for Nuclear” sounds so much like something dreamed up by industry executives that it can elicit suspicion, even anger, in those who are anti-nuclear. The organization is entirely volunteer-run, with a tiny budget, and has not accepted donations from companies. But Hoff and Zaitz work at a nuclear plant and have been flown to give talks at industry-sponsored events; Mothers for Nuclear has received small donations from others who work in the industry. There is no denying the conflict of interest posed by their employment; even within the pro-nuclear community, their industry ties provoke uneasiness. Nordhaus, the executive director of the Breakthrough Institute, wrote in an e-mail that, although he thinks Hoff and Zaitz are “well-intentioned,” nuclear advocacy should be independent of what he called “the legacy industry.” (The Breakthrough Institute has a policy against accepting money from energy interests.) Yet, from another angle, their connection to industry may be an asset. “Where they’ve been successful is coming at it from a personal perspective,” Jessica Lovering, the co-founder of Good Energy Collective, told me. Their approach to telling their stories, as outdoorsy, hippie moms, “humanizes the industry,” she said.
On a drizzly morning in May, 2019, when such visits were possible, Hoff and Zaitz offered me a tour of their plant. Hoff picked me up from my hotel in San Luis Obispo in her slate-gray electric Ford Focus, adorned with a “Split Don’t Emit” bumper sticker. While we waited for Zaitz at a café a few blocks away, Hoff told me about the lavender pendant hanging around her neck. Crafted for her by an artist she knew in Arizona, it was made partly of uranium glass, an old-fashioned material that has a touch of uranium added in for aesthetic purposes. “I wear it as a demonstration—radiation is not necessarily dangerous,” she said. Like many nuclear advocates, Hoff believes that the fears provoked by radiation are often unfounded or based on information that is not contextualized. A CT scan of the abdomen involves about ten times as much radiation exposure as the average nuclear worker gets in a year. Some scientists argue that no level of radiation exposure is safe, but others doubt that exposure below a certain threshold causes harm, and note that we are all exposed to natural “background” radiation in daily life. (Uranium glass emits a near-negligible amount.) Hoff and Zaitz believe that panic about radiation from nuclear energy has, cumulatively, caused more harm than the radiation itself.
After Zaitz arrived, we set out for Diablo Canyon. I rode up front; Zaitz sat in the back, pumping breast milk for her year-old daughter. The light rain had stopped, but mist still hung in the air. We passed through the town of Avila Beach, driving alongside the ocean. To our left, aquamarine water sparkled. On our right lay gently sloping terrain of grasses, sagebrush, wildflowers, and shrubs. The facility sits amid twelve thousand acres of otherwise unoccupied seaside land. Along the curving road, a sign proclaimed “Safety Is No Accident.” In the distance, the two massive containment domes rose above a cluster of shorter structures.
We pulled into the parking lot. In one of the outbuildings, I handed over my passport, then placed my jacket and bag in a plastic bin for an X-ray. I walked through a metal detector, then stood under the arch of a “puffer machine,” which blasted me with air, shaking loose particles and analyzing them for traces of explosives. Once I’d been cleared, we walked upstairs to Hoff’s office, where the two women exchanged greetings with a few co-workers. We put on safety glasses and hard hats before entering “the bridge,” a narrow corridor with large windows that connects the administration building to the turbine hall. Through the windows, we could see the ocean, where water was continually cycling into and out of the plant. A security guard, armed with a handgun and a rifle, and wearing a red backpack, sauntered by.
The turbine hall, a vast space with a soaring, arched ceiling, was dominated by two large generators. Outside, within the two containment domes, uranium atoms were splitting apart in a chain reaction, heating water to more than six hundred degrees Fahrenheit; the steam spun the turbines, which in turn drove the generators. The resulting electricity would bring power to about three million Californians. Warm air rushed noisily around us. Through the din, Hoff explained different parts of the system: the pipes, the springs that supported them, the condenser, which takes wet vapor from the turbine exhaust and turns it back into liquid. Vending machines selling Pepsi and Chex Mix stood against one wall. I wasn’t allowed to take photos, but Hoff snapped a few of me and Zaitz. We smiled as if we were at Disneyland.
In June, 2016, not long after the formation of Mothers for Nuclear, P.G. & E. announced that it would not renew its operating licenses: the reactors at Diablo Canyon would cease operations in 2024 and 2025, respectively. The company said that its decision was based largely on economic considerations. Customer demand was declining, in part because of the growing popularity of a system called community-choice aggregation, in which localities can choose their energy sources; often they choose wind or solar farms (though they still need to rely on natural gas at night, when solar is unavailable). The year before, California had passed Senate Bill 350, which requires the state to derive half of its energy from renewable sources by 2030; since P.G. & E. would be legally required to increase its procurement of renewable energy, it could end up with more electricity than it needed if it kept Diablo Canyon online.
The environmental groups that supported P.G. & E.’s plan, including the Natural Resources Defense Council and Friends of the Earth, see it as a model for gradually transitioning to a grid fed entirely by renewable energy. P.G. & E. has pledged to replace Diablo Canyon with other low-carbon energy sources. And yet energy storage remains a major challenge. Even if P.G. & E. does manage to fill the gap without help from natural gas—a heavy lift—some argue that, given California’s ambitious climate goals, the state should be adding to its total portfolio of low-carbon energy rather than subtracting from it. Experts differ on the wisdom of the choice. Steven Chu, the Nobel Prize-winning physicist who served as President Barack Obama’s Secretary of Energy, told me that he had urged P.G. & E. not to decommission the plant. “It’s really the last twenty to thirty per cent of electricity where it’s going to be hard to go a hundred per cent renewable,” he said. Daniel Kammen, a physicist and a professor of nuclear energy at the University of California, Berkeley, however, was more sanguine. Although he is not opposed to nuclear power, or even to keeping Diablo Canyon open, he said, “We don’t need nuclear, and we certainly can get to a zero-carbon future without nuclear. The mixture of other renewables means you don’t have to go there.”
Hoff and Zaitz are not especially optimistic about the future of Diablo Canyon, but they hope that, between now and the planned closure, P.G. & E. and state officials can be persuaded to reverse course. They seek to recruit ordinary Californians to their cause. After touring the plant, I accompanied them to a radio studio, where they were scheduled to be guests on Dave Congalton Hometown Radio, a popular local talk show. On the air, Hoff explained who they were. “Mothers for Nuclear offers a different voice,” she said. “Nuclear power plants are run by lots of men, and women have been more scared of nuclear energy. We’re here to offer the motherly side of nuclear—nuclear for the future, for our children, for the planet.”
The phone lines lit up. The first couple of calls were favorable. “It’s kind of nice to hear a little bit of sanity about nuclear power, for a change,” a caller named John said. But then Pete, a listener who said that he had protested the construction of Diablo Canyon back in the early eighties, brought up nuclear waste. “There’s been numerous efforts to put it here, put it there, put it in barrels, bury it in the sea, bury it in deep caves—this, that, the other thing,” he said. “I don’t think any really good solution has even come up.”
“Pete, where do you put your garbage?” Hoff asked. “Where do you put your plastic waste?”
“That’s not radioactive!”
“It’s still really damaging to the environment,” Hoff said.
“An accident at a nuclear plant is a lot worse than an explosion at an oil plant,” Pete said.
Zaitz jumped in. “The surprising thing, Pete, that we found out is that nuclear is actually the safest way to make reliable electricity when you look at even the consequences of the worst accidents we’ve ever had,” she said. “Any other energy source ends up, in the long run, killing more people, whether it’s due to air pollution, whether it’s due to industrial accidents. Air pollution kills about eight million people per year.”
As the conversation continued, Hoff and Zaitz held their own, but it seemed unlikely that many minds would be changed decisively. In trying to plan a carbon-free future, we are faced with imperfect choices and innumerable unknowns. In such situations, we typically go with our guts. Gut feelings are hard to alter. And yet, especially for younger people, nuclear power may not elicit visceral fears. Many people who did not grow up with the threat of a nuclear holocaust now face a future of climate chaos. Many lie awake at night imagining not meltdowns but lethal heat waves and calving glaciers; they dread life on an inexorably less hospitable planet.
Since I first met with Hoff and Zaitz, the coronavirus pandemic has upended the world. At Diablo Canyon, the comparatively small fraction of the plant’s workers who need to be on site—security guards, control-room operators, and the like—are now doing so in masks, and with other safety protocols in place; Hoff and Zaitz have been working from home. Meanwhile, last summer, wildfires set the West Coast ablaze. For Hoff and Zaitz, both crises have reinforced their existing beliefs. Evidence that air pollution exacerbates vulnerability to covid-19 is yet another reason to move away from fossil fuels; the importance of ventilators and other devices at hospitals underscores the need for reliable, around-the-clock electricity. Last August, when thick smoke blocked the sun in parts of California, solar output in those areas temporarily plummeted.
Rolling blackouts have raised questions about how California’s grid will function after Diablo Canyon is shut down. In May, the office of the California Independent System Operator, which is responsible for maintaining the grid’s reliability, filed comments to the state’s Public Utilities Commission. Its modelling, the office reported, showed that “incremental resource needs may be much greater than originally anticipated and that the system hits a critical inflection point after Diablo Canyon retires.” At the same time, the plant’s outsized role is not without drawbacks. The reactors periodically need to be taken offline for maintenance, withdrawing a substantial amount of electricity from the grid.
Our energy system is in flux. There are innovations under way in the renewables sphere—advances in battery storage, demand management, and regional integration—which should help overcome the challenges of intermittency. Nuclear scientists, for their part, are working on smaller, more nimble nuclear reactors. There are complex economic considerations, which are inseparable from policy—for example, nuclear power would immediately become more competitive if we had a carbon tax. And there are huge risks no matter what we do.
To be fervently pro-nuclear, in the manner of Hoff and Zaitz, is to see in the peaceful splitting of the atom something almost miraculous. It is to see an energy source that has been steadily providing low-carbon electricity for decades—doing vastly more good than harm, saving vastly more lives than it has taken—but which has received little credit and instead been maligned. It is to believe that the most significant problem with nuclear power, by far, is public perception. Like the anti-nuclear world view—and perhaps partly in response to it—the pro-nuclear world view can edge toward dogmatism. Hoff and Zaitz certainly seem readier to tout studies that confirm their views, and reluctant to acknowledge any flaws that nuclear energy may have. Still, even if one does not embrace nuclear power to the same extent, one can recognize its past contributions and question the wisdom of counting it out in the future.
One of the last times I spoke with Zaitz, she noted that a lot of people seemed to be feeling discouraged at this moment, overwhelmed by the scale of the challenges ahead. But she counselled against despair. “The hopeful way to go into that is, ‘Oh, wow, we actually have technology that can do this,’ ” she said. “And that’s nuclear. And so I’d rather stay hopeful.”
Costa Cruises and AIDA Cruises ships calling at Aqaba, Jordan, are offering their guests climate-friendly vegetables from an innovative farm outside the city. The new partnership brings together the Costa Group and the Norwegian non-profit Sahara Forest Project Foundation.
The initiative will deliver vegetables to a total of 14 incoming ships during the season from March to October.
With 28 ships and over 85,000 berths among the different brands, the leading cruise company in Europe and China wants to create a trend through this project.
“We believe that through this project we offer the chance to replicate the same approach in places and communities where the application of these cutting-edge technologies will represent a step forward into their life,” Davide Triacca, secretary general of the Costa Crociere Foundation, told Forbes.com.
“We also see the tremendous potential of making hundreds of thousands of guests on board Costa and Aida ships aware of key topics. Lastly, on a global scale the impact will be multiplied as usually other players in the cruise industry follow Costa’s leadership example.”
According to Costa, it ‘s not easy to scout innovative and sustainable projects that can be applicable in a realistic time-frame and that can provide a concrete value to the people and the environment.
“We acknowledge that innovation is not (only) an introspective process and that's why the Foundation is always open to effective, sound project proposals from non-profit organizations and start-ups in various fields,” Triacca added. “We don't have any geographical boundary as we will support projects that can bring benefits to the communities and the environment.”
Professor Dan Kammen, director of the Renewable and Appropriate Energy Laboratory (RAEL) at the University of California Berkeley, welcomed the partnership recently presented at COP.
“The Sahara Forest Project planet in Jordan is an exceptionally promising example of true out-of-the-box thinking about the clean-energy-food-water possibilities,” Kammen told Forbes.com.
“By leveraging low-cost renewables, this effort demonstrates that the benefits of clean energy can leverage dramatic shirts to a sustainable future where added food and water access is brought to life.”
According to FAO, the global demand for food, water and energy is expected to increase by about 40 to 50% by 2030. “Doubling food production by 2030 will not come from putting more fertile land into production but mainly from sustainably intensifying production – that is, getting more from agricultural lands already in use – and from using marginal lands, such as drylands,” said FAO natural resources officer Alessandro Flammini.
Due to the war in Syria, however, there has been issues and delays to the roll-out and upscaling. Key logistic routes to markets have been closed and some stakeholders had to change their agendas.
Another challenge has been establishing a saltwater pipeline from the Red Sea to the farm’s site, but the company is currently working with Jordanian officials to make some development in this sense.
“As we understand it, there has been implementation challenges and delays, but we should all hope that they overcome those,” the director of Norway's International Climate and Forest Initiative (NICFI) Per Fredrik Pharo commented. “The Sahara Forest Project showed great promise. Clearly, its circular nature and ability to utilize non-fertile lands for food production and employment could be a breakthrough.”
Inaugurated under the patronage of King Abdullah II of Jordan and Prince Haakon of Norway in 2017, the Sahara Forest Project uses saltwater and sunlight to harvest products. It aims at greening desert areas and creating local jobs through production of food, freshwater and clean energy.
“The ongoing long-term agreement for supply of vegetables to Costa and AIDA ships can pave the way for an expansion of our project in Jordan, while raising international awareness for the need to scale-up innovative solutions to combat global warming and create local jobs in desert areas,” said Mr. Stake, managing director of the Sahara Forest Project.
“It is urgent to prove that it is possible to shift away from current agricultural practices traditionally using 80% of scarce freshwater resources and contributing with 25% of CO2 emissions in many dry countries and scale up concepts that are good for the environment, social development and business.”
For a direct link to the article in Scientific American, click here.
Highland Park’s streetlights were torn out in 2011 because the predominantly black Detroit suburb couldn’t pay its electricity bill after the 2008 economic downturn. Today street lamps once again cast reassuring pools of light—and this time they are cheaper, because they harvest the energy of the sun. Highland Park offers an example of what environmental justice advocates hope to do more of to bring affordable, clean energy to communities of color.
Plummeting costs have helped solar power rapidly expand in the past decade, with U.S. residential installation growing by more than 50 percent each year between 2010 and 2016. But access to this energy has not been equitable—and not just because up-front installation costs can price out people with lower incomes. A new study indicates that even when income is taken out of the equation, communities of color have installed fewer rooftop solar facilities than predominantly white communities. The data are among the first to show such an inequality in access to clean energy, a situation advocates have been reporting anecdotally for years. The results “affirm trends in disparity in adoption that are well known to practitioners, but demonstrate their existence in a robust way,” says Ben Sigrin, an energy systems modeling engineer at the National Renewable Energy Laboratory in Golden, Colorado, who was not involved in the study.
Reasons for the disparity remain unclear, but the latest findings suggest programs aimed at boosting solar power in disadvantaged communities need to consider more than just income levels. Some activists and nonprofit organizations are already moving in this direction. For example, the civil rights group NAACP—inspired partly by local activists who formed a group called Soulardarity, which helped bring Highland Park its solar street lamps—launched a year-long 2018 Solar Equity Initiative aimed at improving solar energy access to marginalized communities, including racial and ethnic minorities. “To us [energy] is just another dimension of social justice challenges,” says Jacqueline Patterson, director of the NAACP’s Environmental and Climate Justice Program. “With clean energy, not only is it often a more affordable way of accessing energy, but it also puts us in control of our energy.”
Solar Disparities
Researchers at the University of California, Berkeley saw a golden opportunity to study imbalances in solar power deployment through their access to data from Google’s Project Sunroof—an initiative that maps solar rooftop panels seen in satellite images—and demographic data from the U.S. Census. They had an inkling of possible racial and ethnic disparities but initially thought other socioeconomic factors could help explain many of them. Yet their study results, published in January in Nature Sustainability,showed that even when controlling for income levels, neighborhoods with either black or Hispanic majority populations have installed fewer rooftop solar panels than neighborhoods with no clear racial or ethnic majority. White-majority neighborhoods, in stark contrast, have more rooftop solar installations than those without a clear majority. The researchers say these differences cannot be completely explained by either household income or home ownership levels (homeowners are more likely than renters to invest in permanent solar panels). “I was not surprised to see that race and ethnicity were important, but once we controlled for income I thought the effect would be reduced significantly,” says Daniel Kammen, director of the Renewable and Appropriate Energy Laboratory at the University of California, Berkeley and a co-author on the study. “But alas, it was not.”
The study did not uncover the root of why rooftop solar panels are typically sparser in black and Hispanic neighborhoods. But the findings mesh with reports from industry and nongovernmental organizations, which have previously shown that a lack of diversity in the environmental and solar-power fields has hindered efforts to spread solar power’s benefits. Causal factors may connect to the well-documented historical pattern of racial discrimination that has left many minority neighborhoods in the U.S. stuck with problems like insufficient public infrastructure and predatory home loans. “The disparity in rooftop solar is the same disparity as in everything else,” says Naomi Davis, founder and president of the Chicago-based nonprofit organization Blacks in Green.
The study also adds to the body of research showing that black and Hispanic Americans bear the brunt of the costs of fossil fuel use. For one thing, they are exposed to higher levels of air pollution than white Americans—regardless of income levels. There are more direct economic effects as well. “This paper does highlight an energy injustice,” says Deborah Sunter, assistant professor of mechanical engineering at Tufts University in Medford, Mass. and co-author of the rooftop solar study, “because there are certain communities that are missing out on the financial benefits that come with having rooftop solar: the tax incentives, the rebates, the profit from net metering.” (The latter refers to credits received in exchange for putting excess solar power into the electricity grid.)
Shifting Strategies
There is already a movement among community activists, researchers and politicians to promote social justice in policies designed to support clean energy and fight climate change. “There is tons of leadership in communities of color that is not seen or acknowledged, and it’s growing,” says Julian Foley, vice president of communications at Grid Alternatives, a nonprofit organization based in Oakland, Calif. that helps disadvantaged communities install solar projects. The study’s results could help fine-tune such efforts by underlining the need to shift strategies from focusing only on low-income communities—since that approach may not catch neighborhoods where ethnic minorities predominate. Kammen says policymakers could, for example, recognize how credit scores have been used to discriminate in home loans on the basis of race—and could apply “positive pressure” by offering bonuses to loan seekers who add rooftop solar panels or other energy-efficiency measures.
Officials also need to be aware of how small changes in policy can have indirect but significant impacts on programs aimed at bolstering solar power in disadvantaged communities. For example, the Bishop Paiute Tribe has used both federal energy grants and California state funding for rooftop solar projects, which can slash monthly utility bills by up to 90 percent. But starting in 2020, new California rules that define disadvantaged communities according to U.S. Census tracts could make the tribe ineligible for such state funding, despite being a low-income community. “A lot of tribes are smaller than census tracts, so the income base gets diluted by surrounding communities” under the new rules, says Brian Adkins, environmental director at the Bishop Paiute Tribe Environmental Management Office.
The researchers behind the new study also hope it can encourage leaders to support environmental justice for historically disadvantaged communities—and to recognize more diverse voices on such matters. “The environmental movement in the United States has an overwhelming amount of white leadership, and even if many of those groups are doing great things, that doesn't speak towards a very inclusive effort,” Kammen says.
The advocacy work done by Davis, the Chicago nonprofit leader, has helped shape state legislation aimed at increasing renewable energy in Illinois. She has also secured funding for solar job training and has set up a social enterprise program in hopes of establishing a solar panel assembly plant in Chicago’s predominantly black Woodlawn neighborhood by 2021. Davis sees solar power as just one small piece of a bigger holistic approach to building sustainable neighborhoods, but she wants to make sure black communities are not left out of the economic transition to clean energy in the U.S. “Step back and create partnerships where money flows directly to frontline environmental justice community-based organizations,” Davis says. “And then depend on those organizations to write the story.”
From The Daily Californian, Tuesday, October 8. Click here to go direct to that link, or here for the BerkeleyBlog version.
Voting for a Just Transition
Daniel M Kammen
Each fall at UC Berkeley I teach ‘Energy and Society’, a very unusual course that covers the science, politics, and policy angles needed to understand – and to change – our energy system from one that is now rapidly degrading the planet, to a sustainable, healthy, and equitable one. The best feature of this class is that it is a melting pot not only of different majors, but also of undergraduate and graduate students working together to master the material
The first thing we cover, using basic chemistry that has been well known to science for over 100 years,is that endlessly emitting greenhouse gases will warm the planet. We have known scientifically since the 1990s that climate change is already impacting ecosystems, crops, and both human and environmental health. We have known for almost two decades that we have already warmed the planet by one degree Celsius, and that at two degrees Celsius, dramatic changes to the earth will be everyday events.
Instead of becoming a rallying cry for innovation as were the responses to disease (“the war on polio”), food, poverty and nutrition (“the Green Revolution”) or the desire to reach space (“the Apollo program”), climate change has become, arguably, the most divisive issue in the United States. Where we used to see challenge as an opportunity, this one, inexplicably has become a proxy-war for economic insecurity and class division.
After all, the U.S. Environmental Protection Agency, launched under Republican President Nixon and passed through House and Senate Committees in 1970. TheClean Air Actbecame law in 1970, where it passed the Senate without a single ‘no’ vote. Only one representative voted against the bill. Against expectations, George H. W. Bush featured the environment prominently in his campaign, and in 1988 his presidency saw an expansive update to the Clean Air Act which the Senate passed with bipartisan support.
Since then, however, things have deteriorated, with attention and investment in environmental quality at local, to national, and at global levels becoming the ‘third rail’ of U.S. politics.
This is where local action by Cal students is so critical. As the acknowledged top public university in the world, Cal students, staff, faculty and alumni have helped to make California the remarkable energy and climate leader that it is, but have also found a myriad of ways to spread those experiences across the country and around the world. That reach has never been more important than now as we approach the most important mid-term election in decades.
At the Climate Action Global Summitin San Francisco last month I heard an approach that harkened back to the bipartisanfounding of the U.S. EPA.. This new vision was stated most clearly and eloquently not by politicians, orators, or scientists, but by high-school and college students who gathered in a series of youth summits organized within and around the official meetings.
What is most ironic is that climate change is actually one of the most interesting issues and opportunities we as a country have ever faced because its solution creates economic opportunities. Every bit of coal, gas, or oil that we replace with energy efficiency and clean energy is a shift away from mining resources to investing in companies and investing in people. After all, when the fuel is free, creating new technologies and building social institutions and policies are all ways to invest in ourselves and to both create employment and to use data and institutions to grow the economy. My laboratory here at UC Berkeley has been researching and documenting the green jobs ‘dividend’ and has been doing work witha series of students, many of whom are alumni of ‘Energy and Society’.
The clean energy opportunity is aligned with core values – at least those stated on paper – by both the Democratic and Republican parties. Instead of one of the few places for bipartisan action, however, it has become an area where even the most basic facts are endlessly debated. As research launched at Berkeley has shown, investments in mass transit and for those who need cars, electric vehicles are not only cheaper to operate than gas-powered cars, but they also lead to dramatic reductions in urban air pollution, a hallmark of California policies since the 1970s.
As inequality has grown across America, UC-based research has continued to highlight the many examples of well-meaning policies (such as subsidizing electric vehicles for the affluent) that exacerbate the growing national economic divide. Instead, efforts launched here to invest in more affordable homes and apartments by integrating energy efficiency, solar, power, and both better mass-transit and electric vehicles for low-income Californians offers a sustainable path to social equity.
Of particular note is that California’s landmark climate legislation, SB32which governs our state decarbonization from 2020 – 2030, calls for 35% or more, of our greenhouse gas cap and trade revenues (now in the $10 billion/year range) to be spent on underserved minority communities. I’ll wager that when we look back this bill, it will be this investment in social justice, not the climate target that will be its most important legacy.
This is where the Cal students can play a most immediate and hugely impactful nationwide role: by reaching out to fellow students, parents, and friends both across California and across the country to highlight how doubling down on equitableclean energy projects offers a rare and genuine ‘win-win’ at a time when the country is more divided than ever.
Daniel Kammen is professor and chair of the Energy and Resources Group, and Professor in the Goldman School of Public Policy, and in the Department of Nuclear Engineering. He served in the Obama Administration as Science Envoy for the State Department. Twitter: @dan_kammen
For the piece in Politico, click here.
VATICAN CITY — California has opened a new front in its war on Donald Trump — the Vatican, where Gov. Jerry Brown on Saturday sought to enlist the Catholic Church in his effort to undermine the president’s climate policies abroad.
Brown, addressing a somber gathering of scientists, politicians and religious leaders here, rebuked Trump’s rejection of mainstream climate science as a “lie within a lie,” urging religious establishments to help “awaken the world” to efforts to reduce greenhouse gas emissions.
The conspicuous repudiation of the president, in this center of Christendom on the eve of this week’s international climate talks in Bonn, Germany, served to underscore Brown’s role as one of the most prominent figures in the anti-Trump resistance. But it also highlighted California’s deep antipathy toward the president on a global stage,allying the nation’s most populous state with the international community against the backdrop ofsimmering tension between the White House and Pope Francis on climate change.
The pope, who did not appear at the conference, implicitly criticized the president in October for withdrawing from the Paris climate agreement, a decision that weighed heavily over the gathering.
Brown wasn’t the only Californian emphasizing the American divide over global warming — or the state’s determination to blaze its own trail on the issue. Rallying the same audience the previous day, California Democratic state Senate leader Kevin de León cast California’s leaders — and not, explicitly, Washington’s — as the “faithful stewards of God’s creation.”
Daniel Kammen, the University of California, Berkeley, professor who resigned noisily from his role as science envoy to the State Department in August, called Trump’s election America’s “existential crisis” and encouraged efforts to impeach him. And California Democratic Congressman Scott Peters said the relatively large proportion of U.S. Congress members who are Catholic is “one reason why Pope Francis’ commitment to making environmental stewardship a priority of his papacy has such a potential to affect American climate policy.”
The meeting, hosted by the Pontifical Academy of Sciences, preceded two weeks of climate talks in Bonn, where Brown and leaders of other Democratic states will seek to persuade the world’s nations that wide swaths of the United States remain committed to the Paris agreement. Trump’s withdrawal from the pact has cast a cloud over the upcoming gathering in Germany.
Still, California's Democratic governor minimized the significance of Trump’s withdrawal from the accord, saying the decision helped focus public attention on the issue.
In comparison to worldwide efforts to address climate change, Brown said, “The Trump factor is very small, very small indeed.”
Instead, Brown called for a fundamental transformation of people’s way of life.
“It’s not just a light rinse,” Brown said. “We need a total, I might say brainwashing. We need to wash our brains out and see a very different kind of world.”
Yet the Catholic Church’s ability to move American public opinion on climate change remains in doubt. For one thing, relations between Trump and the spiritual leader of America’s more than 50 million Catholics remain cool after Pope Francis criticized Trump on issues ranging from climate change to immigration to refugee resettlement.
“The state of relations between the pope and Trump is not good and has never been good,” longtime Vatican analyst Iacopo Scaramuzzi said in an email. “They are openly at odds on almost every point, from personal style of life to issues as climate change or migrations, from attitude towards China, Iran or Cuba to the concept of ‘people’ and ‘populism.’”
While the pope’s encyclical on the environment served as an inspiration for negotiations in Paris two years ago, many climate activists hoped lobbying by a popular religious figure might also nudge public opinion on climate among conservatives in the United States. There is little evidence that has happened.
Following the encyclical’s release and the pope’s 2015 U.S. tour, researchers at the Yale Project on Climate Change Communication found a short-term increase in the number of Americans who said climate change was a “moral,” “social justice” or “poverty” issue. Soon after, however, they found public opinion returned to pre-encyclical levels.
“It was him coming to the Untied States, where he got 24-7, wall-to-wall coverage …. we saw a significant impact on public opinion,” said Anthony Leiserowitz, director of the Yale Project on Climate Change Communication. “We also found that six months later, that effect had faded away.”
Bob Inglis, a former Republican congressman whose progressive views on climate change contributed to his defeat in a South Carolina primary in 2010, said of the pope’s encyclical, “I do acknowledge that it hasn’t exactly — it hasn’t yet turned into the barn burner that I had hoped that it might have been.”
For conservatives, Francis may be an imperfect messenger, controversial for his relatively progressive views not only on climate, but on marriage and immigration. The pope and Trump traded jabs during the presidential campaign last year about Trump’s proposal to build a wall along the U.S.-Mexico border, and Trump announced his withdrawal from the Paris climate agreement just days after a visit in which the pope handed him a copy of his encyclical, Laudato Si.
“I’ve got a Catholic friend in Congress who will go nameless, who told me that, and he was only halfway joking, that he thinks this pope is the anti-Christ,” Inglis said. “There’s a contingent of American Catholics who really think that the pope has left the reservation.”
Inglis said he is optimistic for the long-term effect of the pope’s advocacy on climate change, as the issue is taught in local parishes and other religious organizations. Climate activist Bill McKibben said the Catholic Church is “one of those bureaucracies through which things work their way kind of slowly,” and he said its effects will likely percolate for years.
But Francis is also suffering in America from a problem that he shares with Trump: a declining base. Though about 1 in 5 American adults are still affiliated with the Catholic Church, their numbers are in decline. A survey last month from the Pew Research Center found a majority of U.S. adults do not think it is necessary to believe in God to be moral. And regardless of religious affiliation, climate change has failed in recent elections to register a top level of concern for most voters.
Jim Nicholson, the former secretary of Veterans Affairs and Republican National Committee chairman who served as ambassador to the Holy See under George W. Bush, said Trump’s relationship with the Vatican “got off to a ragged start” but has improved steadily and is now “pretty good.” He cited Trump’s nomination of Callista Gingrich, the wife of former House Speaker Newt Gingrich, to be ambassador to the Holy See.
“There are obvious differences on some subjects, like climate and immigration and the death penalty, always. But there’s an awful lot of alignment in values — religious freedom and trafficking and life,” he said.
Trump has said he is withdrawing from the Paris agreement because it puts the United States “at a very, very big economic disadvantage.” But he heartenedmany religious leaders with his appointment of Neil Gorsuch to the U.S. Supreme Court and his opposition to funding for nongovernment organizations that perform abortions.For many religious voters, said Mitch Hescox, president of the Evangelical Environmental Network, matters such as abortion and Supreme Court nominations carry more weight at the ballot box than climate change.
“The problem is that [climate change] is not on the radar screen of the reasons they vote yet at this point in time,” Hescox said. “That’s my job, is to help them to see why it is as important as being pro-life. Our No. 1 message is that climate change is a pro-life issue.”
Climate experts stewed throughout the Vatican meeting over global climate projections they described as “horrific,” “terrifying” and “depressing.”
Brown, who left the Vatican for an 80-minute meeting with Arturo Sosa, the superior general of the Jesuits, said Saturday night that he is “going around enlisting allies” in the battle over climate change.
“What it all comes down to is we’ve got to act sooner, and we have to act more decisively, and that’s not happening,” Brown said. “There’s real horror in store for us if we don’t take action.”
Actualizing the Vision of Laudato Si’: On Care for Our Common HomeRoundtable at the Pontifical Academy of SciencesNovember 2, 2016
On the Vatican website: click here.
Laudato Si’ is a powerful text, political and poetic, and deeply inspiring. It addresses the most critical issues of our time in vision and substance. It elucidates the necessity and means of “individual ecological conversion”, to see the “world as a sacrament of communion.”
Two of its guiding tenets are “the human environment and the natural environment deteriorate together”, and that we have mutually reinforcing obligations to the earth and to each other. The Beatitudes provide the philosophy to shape our work of transforming and healing society and our planet. The Encyclical provides the blueprint.
The following means and principles to actualize the vision of Laudato Si’ were put forward at the 2 November 2016 Roundtable at the Pontifical Academy of Sciences:
Action Recommendations:
Expand the dialogue with those with influence and power (noting specifically those who drive investment decisions) on the dovetailing of environmental and social issues - “the book of nature is one and indivisible” - and its relevance and implications; toward that end establish a sustainable investment advisory committee for the Vatican’s own investment activities.
Continued personal engagement and presence of the Pope in delivering and keeping current the message of Laudato Si’. The more Pope Francis speaks about climate change and Laudato Si’, the more he will influence public opinion around the world.
A detailed and well resourced communication and messaging strategy for Laudato Si’, targeted to diverse audiences, which stresses the urgency of the challenge. A plan, differentiated in style, tone, pace and suggested terms of engagement for the four different generations that are active at this moment in history. The different generations should be addressed on their own terms, and with their input. Engage leaders in social media to spread and evolve the message of Laudato Si‘.
That the institution of the Catholic Church, serving as spiritual guide and moral messenger, also serve as physical and behavioral example, modeling in microcosm, the planetary vision of Laudato Si’ by accelerating the conversion to sustainable stewardship of its own land and assets, the Church’s training programs for priests being a powerful, integral aspect.
Promote an interdisciplinary interfaith forest, land and climate initiative - which acknowledges the “mysterious relations between things” - convened and directed by an inclusive public private partnership.
Be aware of and address the emotional and spiritual implications and sorrow deriving from our “disfigurement” of our common home, which we have “burdened and laid waste,” and from distressing commercialism, which “baffle[s] the heart.” Laudato Si’ needs to be widely discussed, shared and acted upon in public and mental health circles, for which it has profound relevance.
Principles to incorporate in the various work of our communities, and additional points of discussion:
Understand the relationship between “velocity” of current culture and the loss of internal, spiritual time and time for reflection, which is necessary for building a just and compassionate society.
Recognize that energy poverty is a major impediment to equity and harmony both within and between communities and nations, and greatly impedes our progress in sustaining the Earth as our common home.
Support grass roots activist movements and individuals, as powerful countervailing as well as spiritually enriching forces that make the need for global stewardship vibrant and accessible.
Assure that indigenous forest inhabitants have meaningful work that arises from their values, and their relationship to the land. Assure that there are specific avenues for the wisdom of these communities to permeate our atomized civil societies.
Encourage down to earth dialogue among faith communities and civil society on the subject of environmental market mechanisms which, like any other tool, can be used either for good or ill, remaining mindful that the Economy is a subset of Nature, and not the other way around.
Support governments in crafting policies and laws which reflect our moral and spiritual obligations to each other and to Nature, as they translate into physical and material obligations.
Work to establish local and national commitments to use-inspired basic research, required for sustainable energy and water systems and valuing forests. Research and innovation is a vital tool in implementing the Encyclical, will foster beneficent new technologies, narrow the gap between Nature and technology, and allow people and Nature again to “extend a friendly hand to one another.”
We need a change of heart; we need to increase tenderness towards each other and the environment, and the way we will get there is not built solely on greater analytical insights and new policy, but also moving aesthetic experiences that raise our minds, hearts, and souls towards the good the transcendental, and the holy.
Diets of those consuming industrially produced meat, notably cattle, require a disproportionate amount of arable land, and water. This extravagant inequity highlights that, as with what we purchase, what we eat is a moral choice. Nature’s bounty can be sufficient for all needs, but not all greed.
Engage the spiritual infrastructure of our world geographically, and include georeligious dynamics in dialogues about environmental programs and policy. Keep the spirit of Laudato Si' alive, repeated, and deeply ingrained in communities of faith through communications media, actionable geography-relevant materials (like maps with guided land-use and land/facility maintenance suggestions for various dioceses), and through scientific, and NGO partnerships.
Disseminate a central lesson of Laudato Si’: that we bear moral responsibility for the full lifecycle of activity resulting from our individual economic actions. We each have personal responsibility for the environmental harm caused by the energy we use or the food we eat, any inequity or injustice in the product supply chains that provide us goods and services, and the byproducts and waste we create.
Operationally capitalize on and expand the commonalities between religions, communities, and beliefs around the planet, a shared language that can build understanding and cooperation to support sustainability.
Laudato Si’, explicitly and implicitly, grounds our material reality in a cosmological view of interrelatedness - in the tradition of St. Francis, Teilhard de Chardin, Thomas Berry, among others - proclaiming the Universe a “communion of subjects,” and not “a collection of objects.” (Thomas Berry, 1999)
Leslie Parker, REIL; and Professor Daniel M. Kammen, Founding Director, Renewable and Appropriate Energy Laboratory, http://rael.berkeley.edu, University of California, Berkeley
November 2, 2016 - NatureWith prices for renewables dropping, many countries in Africa might leap past dirty forms of energy towards a cleaner future
At the threshold of the Sahara Desert near Ouarzazate, Morocco, some 500,000 parabolic mirrors run in neat rows across a valley, moving slowly in unison as the Sun sweeps overhead. This US$660-million solar-energy facility opened in February and will soon have company. Morocco has committed to generating 42% of its electricity from renewable sources by 2020.
Across Africa, several nations are moving aggressively to develop their solar and wind capacity. The momentum has some experts wondering whether large parts of the continent can vault into a clean future, bypassing some of the environmentally destructive practices that have plagued the United States, Europe and China, among other places.
“African nations do not have to lock into developing high-carbon old technologies,” wrote Kofi Annan, former secretary-general of the United Nations, in a report last year. “We can expand our power generation and achieve universal access to energy by leapfrogging into new technologies that are transforming energy systems across the world.”
That's an intoxicating message, not just for Africans but for the entire world, because electricity demand on the continent is exploding. Africa's population is booming faster than anywhere in the world: it is expected to almost quadruple by 2100. More than half of the 1.2 billion people living there today lack electricity, but may get it soon. If much of that power were to come from coal, oil and natural gas, it could kill international efforts to slow the pace of global warming. But a greener path is possible because many African nations are just starting to build up much of their energy infrastructure and have not yet committed to dirtier technology.
Several factors are fuelling the push for renewables in Africa. More than one-third of the continent's nations get the bulk of their power from hydroelectric plants, and droughts in the past few years have made that supply unreliable. Countries that rely primarily on fossil fuels have been troubled by price volatility and increasing regulations. At the same time, the cost of renewable technology has been dropping dramatically. And researchers are finding that there is more potential solar and wind power on the continent than previously thought—as much as 3,700 times the current total consumption of electricity.
This has all led to a surging interest in green power. Researchers are mapping the best places for renewable-energy projects. Forward-looking companies are investing in solar and wind farms. And governments are teaming up with international-development agencies to make the arena more attractive to private firms.
Yet this may not be enough to propel Africa to a clean, electrified future. Planners need more data to find the best sites for renewable-energy projects. Developers are wary about pouring money into many countries, especially those with a history of corruption and governmental problems. And nations will need tens of billions of dollars to strengthen the energy infrastructure.
Still, green ambitions in Africa are higher now than ever before. Eddie O'Connor, chief executive of developer Mainstream Renewable Power in Dublin, sees great potential for renewable energy in Africa. His company is building solar- and wind-energy facilities there and he calls it “an unparalleled business opportunity for entrepreneurs”.
POWER PROBLEMS
Power outages are a common problem in many African nations, but Zambia has suffered more than most in the past year. It endured a string of frequent and long-lasting blackouts that crippled the economy. Pumps could not supply clean water to the capital, Lusaka, and industries had to slash production, leading to massive job lay-offs.
The source of Zambia's energy woes is the worst drought in southern Africa in 35 years. The nation gets nearly 100% of its electricity from hydropower, mostly from three large dams, where water levels have plummeted. Nearby Zimbabwe, South Africa and Botswana have also had to curtail electricity production. And water shortages might get worse. Projections suggest that the warming climate could reduce rainfall in southern Africa even further in the second half of the twenty-first century.
Renewable energy could help to fill the gap, because wind and solar projects can be built much more quickly than hydropower, nuclear or fossil-fuel plants. And green-power installations can be expanded piecemeal as demand increases.
Egypt, Ethiopia, Kenya, Morocco and South Africa are leading the charge to build up renewable power, but one of the biggest barriers is insufficient data. Most existing maps of wind and solar resources in Africa do not contain enough detailed information to allow companies to select sites for projects, says Grace Wu, an energy researcher at the University of California, Berkeley. She co-authored a report on planning renewable-energy zones in 21 African countries, a joint project by the Lawrence Berkeley National Laboratory (LBNL) in California and the International Renewable Energy Agency (IRENA) in Abu Dhabi. The study is the most comprehensive mapping effort so far for most of those countries, says Wu. It weighs the amount of solar and wind energy in the nations, along with factors such as whether power projects would be close to transmission infrastructure and customers, and whether they would cause social or environmental harm. “The IRENA–LBNL study is the only one that has applied a consistent methodology across a large region of Africa,” says Wu. High-resolution measurements of wind and solar resources have typically been done by government researchers or companies, which kept tight control of their data. The Berkeley team used a combination of satellite and ground measurements purchased from Vaisala, an environmental monitoring company based in Finland that has since made those data publicly available through IRENA's Global Atlas for Renewable Energy. The team also incorporated geospatial data—the locations of roads, towns, existing power lines and other factors—that could influence decisions about where to put energy projects. “If there's a forest, you don't want to cut it down and put a solar plant there,” says co-author Ranjit Deshmukh, also an energy researcher at Berkeley.
The amount of green energy that could be harvested in Africa is absolutely massive, according to another IRENA report, which synthesized 6 regional studies and found potential for 300 million megawatts of solar photovoltaic power and more than 250 million megawatts of wind. By contrast, the total installed generating capacity—the amount of electricity the entire continent could produce if all power plants were running at full tilt—was just 150,000 megawatts at the end of 2015. Solar and wind power accounted for only 3.6% of that.
Credit: Nature, November 2, 2016, doi:10.1038/539020aThe estimate of wind resources came as a surprise, says Oliver Knight, a senior energy specialist for the World Bank's Energy Sector Management Assistance Program in Washington DC. Although people have long been aware of Africa's solar potential, he says, as of about a decade ago, few local decision-makers recognized the strength of the wind. “People would have told you there isn't any wind in regions such as East Africa.”
The World Bank is doing its own studies, which will assess wind speeds and solar radiation at least every 10 minutes at selected sites across target countries. It will ask governments to add their own geospatial data, and will combine all the information into a user-friendly format that is freely available and doesn't require advanced technical knowledge, says Knight.“It should be possible for a mid-level civil servant in a developing country to get online and actually start playing with this.”
SOUTH AFRICA LEADS
In the semi-arid Karoo region of South Africa, a constellation of bright white wind turbines rises 150 metres above the rolling grassland. Mainstream Renewable Power brought this project online in July, 17 months after starting construction. The 35 turbines add 80 megawatts to South Africa's supply, enough to power about 70,000 homes there.
The Noupoort Wind Farm is just one of about 100 wind and solar projects that South Africa has developed in the past 4 years, as prices fell below that of coal and construction lagged on two new massive coal plants. South Africa is primed to move quickly to expand renewable energy, in part thanks to its investment in data.
Environmental scientist Lydia Cape works for the Council for Scientific and Industrial Research, a national lab in Stellenbosch. She and her team have created planning maps for large-scale wind and solar development and grid expansion. Starting with data on the energy resources, they assessed possible development sites for many types of socio-economic and environmental impact, including proximity to electricity demand, economic benefits and effects on biodiversity.
The South African government accepted the team's recommendations and designated eight Renewable Energy Development Zones that are close to consumers and to transmission infrastructure—and where power projects will cause the least harm to people and ecosystems. They total “about 80,000 square kilometres, the size of Ireland or Scotland, roughly”, says Cape. The areas have been given streamlined environmental authorization for renewable projects and transmission corridors, she says.
But for African nations to go green in a big way, they will need a huge influx of cash. Meeting sub-Saharan Africa's power needs will cost US$40.8 billion a year, equivalent to 6.35% of Africa's gross domestic product, according to the World Bank. Existing public funding falls far short, so attracting private investors is crucial. Yet many investors perceive African countries as risky, in part because agreements there require long and complex negotiations and capital costs are high. “It's a real challenge,” says Daniel Kammen, a special envoy for energy for the US Department of State and an energy researcher at the University of California, Berkeley. “Many of these countries have not had the best credit ratings.”
Elham Ibrahim, the African Union's commissioner for infrastructure and energy, advises countries to take steps to reassure private investors. Clear legislation supporting renewable energy is key, she says, along with a track record of enforcing commercial laws.
South Africa is setting a good example. In 2011, it established a transparent process for project bidding called the Renewable Energy Independent Power Producer Procurement Programme (REIPPPP). The programme has generated private investments of more than $14 billion to develop 6,327 megawatts of wind and solar.
Mainstream Renewable Power has won contracts for six wind farms and two solar photovoltaic plants through REIPPPP. “This programme is purer than the driven snow,” says O'Connor. “They publish their results. They give state guarantees. They don't delay you too much.” Although the country's main electricity supplier has wavered in its support for renewables, the central government remains committed to the programme, he says. “I would describe the risks in South Africa as far less than the risks in England in investing in renewables.”
For countries less immediately attractive to investors, the World Bank Group launched the Scaling Solar project in January 2015. This reduces risk to investors with a suite of guarantees, says Yasser Charafi, principal investment officer for African infrastructure with the International Finance Corporation (IFC) in Dakar, which is part of the World Bank Group. Through the Scaling Solar programme, the IFC offers low-priced loans; the World Bank guarantees that governments will buy the power generated by the projects; and the group's Multilateral Investment Guarantee Agency offers political insurance in case of a war or civil unrest.
Zambia, the first country to have access to Scaling Solar, has won two solar projects that will together provide 73 megawatts. Senegal and Madagascar were next, with agreements to produce 200 and 40 megawatts, respectively. Ethiopia has just joined, and the IFC will give two further countries access to the programme soon; its target is to develop 1,000 megawatts in the first 5 years.
MAKING IT FLOW
That power won't be useful if it can't get to users. One of the big barriers to a clean-energy future in Africa is that the continent lacks robust electricity grids and transmission lines to move large amounts of power within countries and across regions.
But that gap also provides some opportunities. Without a lot of existing infrastructure and entrenched interests, countries there might be able to scale up renewable projects and manage electricity more nimbly than developed nations. That's what happened with the telephone industry: in the absence of much existing land-line infrastructure, African nations rapidly embraced mobile phones.
The future could look very different from today's electricity industry. Experts say that Africa is likely to have a blend of power-delivery options. Some consumers will get electricity from a grid, whereas people in rural areas and urban slums—where it is too remote or too expensive to connect to the grid—might end up with small-scale solar and wind installations and minigrids.
Still, grid-connected power is crucial for many city dwellers and for industrial development, says Ibrahim. And for renewables to become an important component of the energy landscape, the grid will need to be upgraded to handle fluctuations in solar and wind production. African nations can look to countries such as Germany and Denmark, which have pioneered ways to deal with the intermittent nature of renewable energy. One option is generating power with existing dams when solar and wind lag, and cutting hydropower when they are plentiful. Another technique shuttles electricity around the grid: for example, if solar drops off in one place, power generated by wind elsewhere can pick up the slack. A third strategy, called demand response, reduces electricity delivery to multiple customers by imperceptible amounts when demand is peaking.
These cutting-edge approaches require a smart grid and infrastructure that connects smaller grids in different regions so that they can share electricity. Africa has some of these 'regional interconnections', but they are incomplete. Four planned major transmission corridors will need at least 16,500 kilometres of new transmission lines, costing more than $18 billion, says Ibrahim. Likewise, many countries' internal power grids are struggling to keep up.
That's part of what makes working in energy in Africa challenging. Prosper Amuquandoh is an inspector for the Ghana Energy Commission and the chief executive of Smart and Green Energy Group, an energy-management firm in Accra. In Ghana, he says, “there's a lot of generation coming online”.
The country plans to trade electricity with its neighbours in a West African Power Pool, Amuquandoh says, but the current grid cannot handle large amounts of intermittent power. Despite the challenges, he brims with enthusiasm when he talks about the future: “The prospects are huge.”
With prices of renewables falling, that kind of optimism is spreading across Africa. Electrifying the continent is a moral imperative for everyone, says Charafi. “We cannot just accept in the twenty-first century that hundreds of millions of people are left out.”
Link to the article:
https://www.scientificamerican.com/article/can-wind-and-solar-fuel-africa-s-future/
It’s shocking for me (Robert) to accept that my home could be wiped out by greatly rising seas. That’s because I live on a hill north of San Diego, 45 feet above sea level and more than a mile inland from the coast. Equally shocking to me (Dan) is that the current coastline of my beloved Mendocino County, California, could largely disappear, a place where I spend weekends with my daughters exploring rivers that run inland, deep into wine country. These inundations won’t happen this century, but that is little solace. At the rate the world is going, land so dear to our hearts could slip under the sea and stay there for thousands of years.
That hurts. Most of us believe our homes, our towns, our cities will be here for centuries and millennia to come. And why not? In Europe and across Asia millions of people live in cities that are thousands of years old. Indeed, inspired by European permanence, Robert’s family built garden walls from stone and fondly looked forward to passing on the land to hoped-for-grandchildren, and theirs, and so on.
That idea, however, now seems flawed to both of us writing this article. Strong, new research indicates that anyone or anything tens of feet above the sea today may one day face an unbeatable force, whether a country home near San Diego or a skyscraping condo in Miami. Although shorelines are forever evolving, these changes can be predicted directly, and are due to needlessly excessive carbon dioxide (CO2) emissions from a relatively brief, recent period of time.
How has the public not been made clearly and painfully aware of this? Why does fierce debate over climate miss so glaring a threat? The misperception, the widespread disbelief and the fallacy are rooted in a grave error in our thinking about time.
AN ARTIFICIAL HORIZON
The many models that have projected scenarios about future climate change generally forecast only to the year 2100, or at times merely to 2050. As a result, public discussions have been mostly about “X degrees of warming” or “Y feet of sea level rise” to the end of this century. We have accidentally but notably limited our thinking, causing us to miss striking impacts that arise beyond this limited and artificial, specific time horizon.
It is fair to say that citizens and politicians intend for Miami, and indeed the whole State of Florida, to exist well beyond 2100. Same for New York City, Boston, Washington D.C., London, Shanghai, Amsterdam, Mumbai and so on. Yet the same people discount staggering losses these places face beyond 2100. That’s wrong, and immoral too.
That’s because a crucial fraction of airborne carbon from the industrial revolution, plus that coming this century and next, will persist for tens to hundreds of thousands of years. The CO2 stemming from just 150 years ago to a mere two centuries ahead may commit the world by inertia to tens of thousands of years of impacts.
Anything going on for tens of thousands of years ahead essentially means “forever” on human time scales. These new data imply that we’re creating a kind of forever legacy, one that potentially can’t be ever forgotten, or fixed, no matter how far ahead we conceive of humanity.
We are doing ourselves a dreadful disservice by consistently framing 2100 as essentially the last, final year of impacts. We’re thinking in a blinkered way decades out, while our foot is pressing hard on a warming accelerator that has serious impacts centuries out.
How, then, can we think about climate and seas in truer time frames?
An admirable new paper by Peter Clark and colleagues in Nature Climate Change, titled “Consequences of Twenty-First-Century Policy for Multi-Millennial Climate and Sea-Level Change,” illuminates the issue and helps point a way ahead. It addresses sea level rise in a longer term from a scientific perspective.
The authors first analyze data that show how a major rise in CO2 and warming from 20 millennia ago brought Earth out of an ice age. Air temperatures continued to rise over a long period from the Ice Age to the near-modern climate that began some 11 millennia ago. From that time onward, CO2 levels and air temperatures sharply leveled off.
Sea levels, which were 400 feet lower than today, did not stop rising, however. They continued rising long past when air temperatures reached their plateau, rising for another 8,000 years, climbing another 150 feet up to today’s height. The oceans did not achieve the near-current state that we all know as modern coasts and maps until roughly 3,000 years ago.
The mere sliver (in geologic time) of climate stability in the last 10 or so millennia has dearly helped human societies and cultures to flourish. But the lesson is that seas are acutely sensitive to CO2 and temperatures, and they can have inertia lagging the carbon cycle and climate system. That means today’s oceans could go on rising very long after CO2 might be steadied—even if humanity takes determined action to slow rises in CO2worldwide, or even decrease emissions. This thorny fact is not widely appreciated.
As Clark and his co-authors note, one-fifth to half of the airborne CO2released by human industry so far and in the next 100 years will still be present in the atmosphere by the year 3000. Combine CO2 persistence with the inertia of seas and it can mean sea level rise might go on at least 10 or more millennia—the unimaginable. There is no easy off switch to halt the rising of seas, no matter how much future societies might wish it to end.
The opportunity to go on ignoring this basic dynamic is now vanishingly small. There’s already been a well-accepted 1.5 degree Fahrenheit increase in global temperatures since 1900. That change alone seems to come close to the greatest variations that have occurred over the previous 10,000 years.
The current rate of change is just as concerning. It had taken a long period, from some 21 millennia to 12 millennia ago, for atmospheric concentrations of CO2 to jump by 80 parts per million (ppm), from about 190 to 270 ppm. In that time span global temperatures rose by an average of 7 degrees F. We are on track to repeat that kind of increase over a much shorter period.
Keep in mind what that scale of change means. A difference of 7 degrees F separates today’s “ideal” climate from the extreme conditions of an ice age. For a refresher, the Ice Age built ice sheets over Canada, New England, parts of the Midwestern U.S., Northern Europe and Northern Asia. The Great Lakes were born when those sheets retreated. The meltwater retreat created Long Island in New York, and Cape Cod. Huge impacts were thus wrought by 7 degrees F; ice stood two miles tall over parts of North America, and shaped the elevations of a continent we know today.
Just imagine if there’s another 7 degrees F of global warming ahead. Certainly that would alter land, sea and ecology in scales and ways hard to fathom.
By looking back to Earth’s more distant past we know that with a temperature rise of “only” 2 degrees to 5 degrees F warmer, seas could rise 15 to 65 feet, a level that would drown so much today. For a thought experiment, adding 5 degrees F of warming is very imaginable, given current trends of increasing CO2. So it is reasonable to imagine seas 60 feet higher. That would render all of Florida a memory, almost all of New York City, much of the Eastern seaboard, parts of the Western U.S. and Gulf Coasts—and (Robert’s) acre of San Diego land that today is a mile from the present shore.
Mechanisms by which this happens are easy to fathom. Greenland’s ice sheet stores only 22 feet of potential sea level rise, possibly ongoing for some 10 millennia. However, the Antarctic ice sheet stores around 150 feet of potential rise in that same time frame. Ironically, over the last dozen years, the East section of the Antarctic ice sheet annually has gained some 175 trillion pounds of ice. But West Antarctic annually has lost much more, some 275 trillion pounds of ice. (Greenland has averaged 600 trillion pounds of ice lost yearly, which is equivalent to10 billion trucks a year carting ice away).
We may be heading quite outside of conditions known in human recorded history. Earth might even begin to exhibit changes of states that only can be guessed at. A new study, for instance, shows that net melting is causing Earth to slightly change how it moves on its polar axis. Days are getting just very slightly longer as ice melts at poles and redistributes that mass as water towards the equator. A very tiny change in Earth’s spin may not be troubling, yet it helps to show the magnitude of changes possible from CO2. Even distant earthquakes conceivably can grow in size or frequency, as unburdening crust rebounds after losing trillions of tons of ice. That in turn also could mean increased volcanism and tsunamis worldwide.
These threats may be on long timescales but there’s an acute need for scientific knowledge, measured in and across millennia, to seep into our global discussions.
August 2016 was the planet’s warmest month on record, by a lot. It was the 16th month in a row that a monthly heat record fell, way beyond any such streak in 137 years of record keeping. Arctic temperatures were an eye-opening 20 degrees F above normal. With relatively extreme levels of heat covering the Arctic, ice levels in the winter there were the lowest ever recorded. Nights have stayed warmer worldwide, too, making heat waves tougher to endure. This happened alongside the largest, single-year jump in atmospheric CO2 concentrations ever recorded. The level is now over 400 ppm and rising. And the global ocean reached record warmth as well.
So what does all this mean for sea level rise?
An international panel in 2013 had given scenarios for rise in this century mainly based on straightforward expansion of warming oceans. They only allowed for a small influence from marine ice-sheet instability, known as MISI, primarily on the assumption that Antarctic ice sheets were too stable and vast to irreversibly shrink this century.
The report presented an optimistic lower-end CO2 scenario that assumed strong actions would be taken later this century to reduce CO2 emissions, and which predicted an estimated 1 foot of rise (0.3 to 0.6 meters) by 2100. The higher-end estimate, based on current trends continuing and little strong action this century to reduce CO2, led to 3 feet of rise by 2100, with the rate increasing rapidly to between one third to over half of an inch (8 to 16 millimeters) per year during the last two decades of this century. Such a rate only a century hence could be up to 10 times the 20th century average rise and might possibly approach what had occurred around end of the Ice Age, when seas rose rapidly.
In the three years since that major report, three new papers on ice-sheet dynamics have shown that our prior understanding was incomplete, and that MISI mechanisms may be much more extensive across the Antarctic. The enormous Pine Island Glacier in Antarctica, for example, is thinning and retreating at a quickening rate. Mechanisms in newer models show that mass loss from unstable retreat may potentially become significant, sooner than expected. Some early collapse may be starting at the Thwaites Glacier now. Unexpected collapse of the Antarctic marine ice sheet could cause previous upper estimates of sea level rise to be exceeded not long after the end of this century. Although the timescale is uncertain, more rapid collapse could occur in a relatively short time period of two to nine centuries.
NASA’s DC-8 flies over the crack forming across the Pine Island Glacier ice shelf on Oct. 26, 2011. Credit: NASA GODDARD SPACE FLIGHT CENTER, Flickr, CC BY 2.0Furthermore, an important paper released in 2016 notes marine ice cliffs may be becoming instable, another mechanism for yet more rapid retreat through 2100. A different paper, out in March, shows sea levels could start to rise much more than was forecast in the prior lower-end scenarios. It indicates that more than 40 feet of rise may potentially come just from Antarctica by 2500, in accord with higher-end scenarios for CO2.
The point here is that 2100 shouldn’t be regarded as a terminal year. To do so is folly, a fallacy in thinking. Life goes on, people do not end there, and seas will not suddenly halt their rise then.
Scientists are natural skeptics, not prone to dramatize their findings. But cause for abundant hope is fading. That ought to stretch our thinking. Listening to the sea and this emerging science should mean adjusting ideas about what’s wise. The paleoclimate record indicates that in periods of meltwater, or termination of the last glacial period, seas possibly might have risen at an astounding rate of a foot per decade, or 10 feet per century. There is no reason to say it can’t happen again, or rise by faster rates. Given aggressive CO2 trends, it must be considered.
Will such ideas lead to sound policy decisions? They should, but probably will not. Consider that likely levels of CO2 could make a folly of putting billions or trillions of dollars into armoring coastlines. One can imagine an enormously long and expensive wall, say 10 feet high, being topped in a century or two. And one can’t even imagine seawalls able to handle oceans going 50 feet higher and rising.
Costly walls might make slightly more sense if rising seas could be counted on to stabilize, or retreat from knowable heights, and do so in a year meaningful to our species. Since neither is the case, capital that might be spent on armoring might instead be deployed in smarter ways. Arguably, rather than spending enormous yet finite capital on costly “hardening,” it would be better to put resources into avoiding CO2emissions, and growing renewable energy in the first place. Prevention rather than cure. That brings up the next part of this story: What, then, should we do?
GLOBAL CLIMATE POLICY: WHERE’S THE ACTION?
One recently celebrated initial step was the Paris climate agreement, spelled out in December 2015. Although pundits thought it would take years to ratify the accord, by October 2016 the needed threshold of 55 nations that also represented 55 percent of global emissions had ratified it, putting it into effect.
Moving from hope to real and difficult action has undermined prior aspirational agreements, however, such as the Kyoto Protocol. Paris is an important start, as is a recent amendment expanding the Montreal Protocol to cover hydrofluorocarbons, but the world is critically short on time and the means to verify reductions, and on finance for the necessary actions to achieve those reductions.
Paris, moreover, isn’t binding. It is no treaty, and it lacks penalties. And perhaps most importantly the formal goal of 2 degrees Celsius (3.6 degrees F) for an “upper limit” on “allowable” warming is in truth a legal fiction, a mere balm for present leaders, since the planet is on a clear path to blow right past it.
Furthermore, science suggests this 2 degrees C of warming is far more dangerous than the negotiators seem to think. Warming with much higher seas for millennia can be already baked in, even at a hoped-for 2 degrees. That is why the Paris Accord left many scientists shaking their heads in despair. There is an enormous gap between how quickly the science says carbon emissions must fall to stay within 2 degrees C, and what global agreements like that from Paris may aim to require.
International equity is important, too. Western nations have already burned through much of the world’s total allowable carbon budget—the amount of carbon the world can burn before the planet is likely to cross the 2-degree threshold. This is profound, and vexing. Developing nations like China and India bear little blame for fuels burned for a century till now, and they may unsurprisingly argue for growth based on carbon-spewing industry of their own.
Yet repeating our same carbon-path is now unaffordable given the global carbon budget. The physical carbon ceiling is wholly unyielding. The chemistry and physics of warming can’t be bargained with or pled to. Therefore, although the Paris climate accord is good as a first step, the need now is for ongoing real action and a strong, continuing commitment to progress to a 1.5 C target. If we act as if Paris and the Montreal Protocol amendment are the major endpoints, not a beginning, that will put off real solutions until it is too late.
There are also pitfalls along the way if we don’t make climate solutions an ongoing process. “Cap-and-trade” systems for carbon emissions in theory can begin a transition to market-based mechanisms but they have already been gamed by many participants because caps are not rigorous and diminishing. A very hard look is needed at how natural gas is implemented: Can a plant be built today and be decommissioned by 2050? So-called “clean coal” is expensive, untested, unwieldy and unworkable, yet it is raised as a panacea. (Lost coal jobs are indeed a concern worthy of much attention, however). Nonstarters like geoengineering are suggested in some desperation, at least in the long term, yet they defy morality and could worsen a spiraling ocean acidification.
Today, opportunity lies in implementing clean, green economies of solar and wind power, and energy efficiency, and geothermal and hydropower when ecologically friendly. The challenges of ocean acidification, fragile ecosystems and climate-induced migration all point to the need to scale up the truly clean energy economy at an exceptional pace.
We suppose that possibly we all could close our eyes and hope that, say, leaders in China go even bigger on clean energy while dropping coal entirely. But China is cutting back on its ambitious solar goals.
We could hope for “negative emissions” by sucking CO2 from the air and sequestering it into stone far below ground. That's technically feasible in certain basaltic rock regions, but the process is extremely expensive, and it is difficult to see this being implemented at a global scale. And that is where the rub is: CO2 dumping is free, today, and CO2 sequestration is costly.
There are steps that make sense. Carbon taxes—including revenue neutral ones where other taxes are reduced—can work because they send unambiguous economy-wide signals. Carbon accounting across the public sector, and for companies wishing to do business with local to national governments, can educate and start the movement to full carbon pricing. Strong crossover policies, such as those linking car purchases to low-carbon goals, also accelerate the process. Financial divestment from fossil fuels—which has been a challenge to implement—is another natural place to begin.
We must consider, then, opportunities that harness viable technology and economics. For example, a simple, transparent carbon tax could be key. It could help get us near where we’ve got to be and hasten green energy. Even many big businesses are now calling for a carbon tax. A simple tax that’s adopted widely could be very significant. But in the U.S. a carbon tax goes unmentioned in political debates.
One way or another, if leaders are going to get real on climate, they have to end fossil fuel subsidies, then phase out fossil fuel use, all while implementing clean, renewable energy for electricity generation and transportation. We should do this for our grandchildren and for their grandchildren. And because it is patriotic, will make us stronger and is far less distorting to our interests than fossil fuel dependence.
These moves are not burdens. They are opportunities. Getting closer to 100 percent renewables could be achieved more readily than most people say. It can make nations stronger and more resilient, and add jobs. In some places like California, China, Denmark, Germany, Kenya and Morocco, renewable energy is progressing faster than in others. But nowhere is it fast enough.
We two authors have spent most of our careers advancing renewable energy and sustainability, addressing climate both in theory and practice around the world—in academia, the public sector, the private sector and as entrepreneurs. Yet nothing currently gives us great hope that very harsh scenarios for climate change and sea level rise, lasting for millennia, will be completely avoided.
Looking at rates of CO2 emissions, and at international actions that lean toward lofty words about future cuts over real action with teeth today, optimism does not spring to mind. In a mere couple of centuries, humans will have committed Earth to new climate regimes and higher seas never seen in our history, that will potentially last millennia.
And we will have done it all, knowing the likely consequences.
The views expressed are those of the author(s) and are not necessarily those of Scientific American.
ABOUT THE AUTHOR(S)
Robert Wilder
Robert Wilder is a member emeritus of the Director’s Council at Scripps Institution of Oceanography at the University of California, San Diego, and a Fulbright Specialist. He is co-founder of three clean energy indexes; he is at present chair of the WilderHill Clean Energy Index, manager of the WilderHill Progressive Energy Index (for reducing CO2), and co-manager of the WilderHill New Energy Global Innovation Index.
Daniel M. Kammen is a professor of energy at the University of California, Berkeley, where he holds appointments in Energy and Resources Group, the Goldman School of Public Policy, and department of Nuclear Engineering. Kammen is the founding director of the Renewable and Appropriate Energy Laboratory (RAEL). He is also a former Chief Technical Specialist at the World Bank for Renewable Energy and Energy Efficiency and currently serves as a Science Envoy for the U. S. State Department.
David Ferris, E&E reporter
A group of leaders in the solar industry have been holding secret meetings for the last 14 years, strategizing how to make solar the dominant source of energy on Earth.
Called the Solar Circle, it is a quiet sort of brain trust made up of members hand-chosen for their talents and commitment to the cause (see sidebar). It has systematically explored and sought to improve every aspect of the supply chain, playing a behind-the-scenes role as solar transformed from a hippie curiosity into the fastest-growing source of new energy on the power grid.
Twice a year, the group meets like clockwork, despite having no budget, no legal structure and no staff. Members travel on their own dime to weekend retreats that have been held everywhere from Maine to Mexico. And now, after years of brainstorming sessions, deep dives into policy and finance, and late-night guitar sessions, the circle has matured from industry association into something else.
"It has become akin to a family," said Denis Hayes, a founder of Earth Day and an early director of what would become the Department of Energy's National Renewable Energy Laboratory.
The group, founded by 30 representatives from every slice of the solar value chain, is exceedingly diverse. Members are entrepreneurs, philanthropists, engineers, manufacturers, venture capitalists, architects, project developers, activists, lobbyists, physicists, journalists and policymakers, and specialists in most technological means of deriving energy from the sun, as well as adjacent fields like wind power. While the group's thrust is American, it has had delegates from India, Japan, Germany, Great Britain and Hong Kong, and includes innovators who designed the pillars of today's solar landscape.
Many of the founders have been active in solar for decades and are now retired or approaching the end of their careers. They have been supplemented by newcomers who bring the roster of inactive and current members to about 50.
The coterie's older members include Steven Strong, an architect who installed solar panels on the George W. Bush White House; Stanley Bull, a former associate director of the National Renewable Energy Laboratory; and Mike Eckhart, the founding president of the American Council on Renewable Energy and now the head of environmental finance and sustainability at Citigroup. Other, younger members are in the thick of today's turbulent solar market, like Danielle Merfeld, a technology director at General Electric Co.; Tom Starrs, a vice president of solar panel manufacturer SunPower Corp.; Rhone Resch, the recently departed head of the Solar Energy Industries Association; Danny Kennedy, a founder of solar rooftop installer Sungevity (EnergyWire, Feb. 4); and David Hochschild, a member of the California Energy Commission.
The circle was founded in 2002, when the notion of solar playing a serious role on the electric grid was enough to make a congressman laugh. Solar panels were those things that got attached to satellites and blasted into space.
The circle's recruits were early believers in the science of climate change and had a fervent hope that solar could replace the carbon-spewing coal plants that formed the country's energy backbone. But their industry — if it could even be called that — was so small and fragmented that many of its members had never met.
Now most are astonished at how fast and how large solar has grown. Since the circle's founding, the price of an installed residential rooftop solar system has dropped from $11 a watt to less than $4, and the solar industry employs over 200,000 Americans, more than the number who work in oil and gas extraction (EnergyWire, Jan. 12). Solar farms produce only a slim fraction of U.S. electricity — six-tenths of 1 percent as of last year, according to the U.S. Energy Information Administration — but adoption is skyrocketing. If trends hold, this year will see solar bring more new capacity to the U.S. grid than any other source.
That acceleration has some members of the circle wondering whether they still have a role to play. On one hand, solar has scaled to a size they could scarcely imagine; on the other, it has a long way to go if it is to meet the group's professed goal of ruling the world's energy system.
In any case, the circle has tapped its members into an energy source they could find nowhere else.
"It allowed us to take a breath for a moment, marshal our resources and be stimulated intellectually," said Scott Sklar, a solar lobbyist and a former director of the Solar Energy Industries Association. "It was a way to cloister away with people who were as crazy as you were."
The roundtable
The group hopscotches across the country, alternating between the East and West coasts, seeking out nature retreats and organic food when it can. It has converged near a space observatory in the Colorado Rockies, at a convent, at an eco-conference center outside Washington, D.C., and several times at Asilomar, the famed meeting spot on the central California coast. Members have brought their families to Hawaii and met on the shores of Mexico's largest freshwater lake.
Other times, they come together at members' offices, such as in Seattle (at the Bullitt Center, run by Hayes); Oakland, Calif. (headquarters for Sungevity, co-founded by Kennedy); and Chicago, at the offices of Howard Learner, the executive director of the Environmental Law & Policy Center.
Everyone's contribution is different. Hochschild tees up tantalizing political conversations. Joel Makower, the founder of GreenBiz.com, who attended in the early days, counseled on how to expand the group's message to the larger energy industry. Julie Blunden, a former vice president of SunEdison and SunPower, delivers a detailed talk on the financial state of the industry, while Donald Aitken, an educator and sustainable building expert, gives the latest on climate change. Barbara Harwood, an advocate for affordable energy-efficient homes, was a deep thinker who spoke rarely; Dan Shugar, one of the most successful serial entrepreneurs in solar, is known for yelling and pounding the table when he gets worked up.
Most conversations revolve around photovoltaic solar power on the U.S. power grid. But some members doggedly remind their colleagues that there are plenty of other ways to produce solar power and many other places that need it.
Robert Shaw, an early investor in solar manufacturing, talks about the possibility of using sun power to create hydrogen fuel. ("It's a lonely subject to bring up, but I do it at every meeting," Shaw said.) Bill Guiney, who started the solar arm of industrial conglomerate Johnson Controls, is a vocal advocate of solar-thermal power. Others advise their compatriots that it isn't all about the grid. An early member was Harish Hande, an Indian entrepreneur and a founder of the movement to provide solar lighting for the billion or more people in the developing world who have no electricity. Others in small-scale solar are Titus Brenninkmeijer, an heir to a German clothing fortune who backs clean energy projects, and Richard Hansen, an engineer who focuses on rural Latin America. ("I keep the message going like a parrot," he said. "The sunshine's for all.")
A constant topic of discussion has been finance and how solar power can become affordable. That discussion, led by such members as Blunden, Shaw and Eckhart, is where many of the circle's members say they got their most valuable money lessons.
How could the young industry stimulate manufacturing? How about green banks, which make low-cost loans to low-carbon projects? That latter topic was explored by Alisa Gravitz, the CEO of nonprofit Green America, who served as moderator for the group's early meetings. Other sessions dissected the anatomy of the yieldco, a renewable energy finance instrument that has now fallen on hard times.
"There was a rigorous attention to the costs of solar, very careful tracking, where the chokepoints are, where the points of leverage are," said Bracken Hendricks, former executive director of the Apollo Alliance, a group that in the early 2000s sought to rally labor and environmental groups around renewable energy.
Straight talk
To understand the circle's value, consider what happened when Strong showed off about his solar buildings.
Strong is a little-known but influential architect. His company, Solar Design Associates, created the United States' first entirely solar-powered house and the first solar-powered sports stadium (for the San Francisco Giants), and installed photovoltaic solar panels and a solar hot water system at Bush's White House, on an outbuilding. At one meeting, he proudly gave a slideshow of arrays he had placed on U.S. embassies. His colleagues weren't entirely impressed.
"A number of us said, 'Steve, what's really great is you got the government to realize that solar matters,'" said Jito Coleman, former president of Northern Power Systems, a wind turbine manufacturer. "But the problem is that none of this shit looks good."
That was the starting point for one of the first high-level conversations about the aesthetics of solar panels — a topic that remains vital today. (Tesla Motors Inc.'s Elon Musk in late July revealed that part of his master plan is to make rooftop solar panels "beautiful.")
Every member interviewed for this story said the same thing: The chance to share rough-hewn ideas and get unvarnished feedback made the circle invaluable.
"It's a group that is internally pretty critical of missteps," said Dan Kammen, an energy professor at the University of California, Berkeley. Circlers felt safe sharing sensitive information — the prices of solar modules, the valuations of companies — because conversations were off the record and members came to learn they could trust each other.
Participants also cherish the "calibration exercise" held on Saturday morning, when each member gives an update on how things look from his or her part of the industry. No other venue exists where members get a 360-degree view of what's going on. Afterward, the group follows an agenda through the rest of the weekend that includes small group sessions, presentations and discussions.
"I've never left a meeting wanting more," Guiney said, "other than more time."
Secrecy has been essential to the circle's success, members said, though secrecy might be the wrong word; "hiding in plain sight" is more like it. Some members mention the circle on their websites or LinkedIn profiles, without elaboration. "It has not had any visibility, and it has not sought any visibility," Hayes said. By meeting out of the public eye, members said, they are able to speak freely.
EnergyWire learned of the circle's existence from a chance comment of one of its members at a public meeting last fall. Since then, 19 members have gone on the record to tell the Solar Circle's story. Many said the circle has been able to stay so low-profile for so long because of a fierce commitment to keep its container tight, as well as a trait that is common in the circle but rarely found among those at the top of an industry: humility. The group has self-selected for members disinclined to boast or brag.
The group has grown, but slowly, as it seeks out a rare combination of traits: unswerving commitment to solar, a high level of expertise, a humble and generous outlook, and the ability to mesh with a well-established clique. Candidates are auditioned and often turned away. "We look at not just what they are but who they are," said Guiney. "We're sharing some personal information, and we want to make sure that is a person who's trustworthy and honorable. They've got to be in it for more than a buck. It's got to be a passion."
Among the additions have been Kennedy and Blunden, as well as Jigar Shah, the founder of solar developer SunEdison, and Merfeld of GE, who caught the attention of Shaw when she gave a talk at Cornell University.
The group has no members from newer companies in the clean energy space that come closest to being household names, such as Tesla, Sunrun Inc. and SolarCity Corp.
"We know people in all of those companies," Shaw said. "I just don't think they matched the personality, the work-together ethic of the group."
A guest speaker or two can be found at almost every retreat. Once, the guest was a Stanford professor who proposed a road map to the U.S. getting 100 percent renewable energy (ClimateWire, June 2); another was a social media expert from President Obama's first presidential campaign. Often it is a local politician who can give the group a ground-level view, such as Jay Inslee, who spoke before the group when he was a congressman and is now the governor of Washington.
Sometimes the guest stirs things up.
A solar city
In 2004, the circle invited Marvin Keshner, a director at Hewlett-Packard Laboratories, who proposed an idea that astonished the circle.
He suggested that photovoltaic solar panels could follow the curve of another silicon-based industry — semiconductors — that had in the 1980s and 1990s scaled to titanic size, using economies of scale to usher in our era of ubiquitous, cheap computing. Keshner proposed that the United States lead an effort to build hundreds of huge solar factories that would produce several gigawatts of panels a year and spread solar to every roof by slashing its price to a dollar a watt. He called this factory a "solar city."
Keshner's proposal was prescient. Massive factories that produce gigawatts of solar modules a year did get built — in China. The cost of an installed solar system may reach $1 a watt — by 2020. And one U.S. company is attempting to steal back China's lead with a solar "gigafactory." Its name? SolarCity.
But back in 2004, when the idea first fell on the circle's ears, it was a revelation. Shaw said, "It was so far away from where the industry was at that point that it was almost unthinkable."
The group briefly considered mounting a manufacturing effort like Keshner suggested but changed its mind after it realized how much that would cost.
The circle was a venue where exciting prospects first entered the minds of some of the industry's leading lights. Ideas are bandied about, in the leisure of a conversation among equals, with little attempt to make them concrete. Thus the Solar Circle has served as a sort of salon for the solar industry, directing intellectual heat onto promising ideas that subtly percolated outward, often at the state level.
The circle counts among its members some of the architects of today's solar landscape. Starrs, the SunPower vice president, originated key parts of net metering, which compensates small-scale solar generators, like homes, for the power they supply the grid — a proposition that now underlies the financial value of much of the country's fleet of rooftop solar panels. Aitken helped draft the first renewable portfolio standards, which are now in place in a majority of U.S. states. Shah of SunEdison pioneered the power purchase agreement, the model that is used by utilities and businesses to contract the power from renewable energy power plants.
The circle often lends a hand to a member in need.
Some of the younger members, now in their 40s, look to the older cohort, many in their 70s, as mentors. Several members said Hochschild got crucial support from the circle as he co-founded Vote Solar, a San Francisco ballot initiative that was one of the first successful attempts to make solar power a voting issue. (Hochschild declined to be interviewed for this story.)
"What's interesting to me is that it remains a tightly correlated group that will help each other out at the drop of a hat," Blunden said. "I go to them for a kick in the pants."
Others, like Kammen, discovered the power of the circle's network. An introduction from another circle member brought two startup founders into the professor's office. Kammen was impressed and became chairman of the startup's research board. Today that company, Enphase, dominates the market for microinverters, which convert direct current to alternating current at the point of the solar panel and have become a key link in smart and efficient solar arrays.
"This was really a group that just had a lot of interesting conversations," Kammen said, "many of which became companies, ideas or white papers."
But conversations are ephemeral, and even the circle's own members don't agree on whether they have had an impact.
"I think that key leaders within the industry were able to be significantly more effective and nimble and creative and timely because of the circle's existence, and I can't help but believe that the incredible success of the solar industry has been greatly supported by the existence of the circle," said Hendricks.
Others are more circumspect. "If we were all shot and killed," Sklar said, "solar would still be here."
The next dawning
What does a group dedicated to dominance do when it finally starts to win?
That is the existential question facing the Solar Circle and its membership. For years, the group wondered how to get celebrities and religious leaders to speak about climate change and renewable energy; in the last year it got just that, from Leonardo DiCaprio to Pope Francis (ClimateWire, Jan. 20; Greenwire, Sept. 25, 2015). Members strategized how to speed the adoption of rooftop solar; earlier this year, the U.S. surpassed a million solar installations.
Now that solar is maturing into a complex global enterprise, the horizon is filled with other questions: How will gigawatts of intermittent solar power be stored? Can home or industrial-size batteries get cheap enough to do it? Can electric cars? Can the hub-and-spoke electric grid be flattened into a mesh, making a thousand rooftop solar panels as valuable as a centralized coal power plant?
Members of the group are quick to point out that it's still early days for solar. "When there's solar energy on every building you look at, our job might be done then," said Guiney. Some circle members, particularly the younger ones, think the circle could play a role in transforming the world's energy system into one that revolves around the sun.
"In a whiteboard environment, what would we do?" Blunden asked. "We've got to prepare for domination."
But before domination comes defense.
One of the solar industry's key policy tenets, net energy metering, is under attack by climate deniers and "utilities who think they own the electricity world," said Shaw. Nevada gutted its net-metering policy last year, arguing it is a hidden penalty on customers who don't generate their own power. Another key policy tool, the renewable portfolio standard, seemed to be on a path toward bringing ever more renewable power to ever more states — until recently. In the last year, standards have been scrapped in Kansas and West Virginia and have stalled in Ohio and Maryland.
In other ways, solar is "so successful that we caused a new problem," Shaw said. In California, by far the leader in integrating renewables onto the power grid, output from solar and wind farms has spiked at times of day when demand for power is the lowest — the so-called duck curve — which has caused the grid operator to shut down deliveries (EnergyWire, May 2, 2014).
The circle, founded with 30 members, now has meetings attended by between a dozen and 20 regulars. Many of the original members have stepped away, and some refer to it in the past tense. Some, like Kammen, believe the circle has been overtaken by events; he has stopped going, he said, because he can see the same people and have the same conversations at the energy and climate conferences that crowd the calendar these days.
Others find that time is overtaking them.
"I wouldn't say it's a social club, but it's not as substantial or as relevant as it once was," said Hayes. "We're a bunch of geezers now. We're going to start dying, and we'll see if we get replaced and it continues to have usefulness."
At a meeting last year, the circle mourned the passing of three spouses. One was Harwood, who was a circle member along with her husband, Aitken. He still makes it to all the meetings he can, because both the topic and the people are close to his heart.
"There is no other such group anywhere that meets regularly and has such a diverse membership," he said. "And God, we love each other. When we meet each other, there's hugs all around."
Twitter: @DavidFerris Email: dferris@eenews.net